Single crystal inspection, Hirshfeld surface investigation and DFT study of a novel derivative of 4-fluoroaniline: 4-((4-fluorophenyl)amino)-4-oxobutanoic acid (BFAOB)

Author(s):  
Muhammad Ashfaq ◽  
Khurram Shahzad Munawar ◽  
Georgii Bogdanov ◽  
Akbar Ali ◽  
Muhammad Nawaz Tahir ◽  
...  
Author(s):  
Marieta Muresan-Pop ◽  
Sergiu Macavei ◽  
Alexandru Turza ◽  
Gheorghe Borodi

Four new solvates of the anti-HIV compound etravirine [systematic name: 4-({6-amino-5-bromo-2-[(4-cyanophenyl)amino]pyrimidin-4-yl}oxy)-3,5-dimethylbenzonitrile, C20H15BrN6O] with dimethyl sulfoxide (C2H6OS, two distinct monosolvates), 1,4-dioxane (C4H8O2, the 0.75-solvate) and N,N-dimethylacetamide (C4H9NO, the monosolvate), which exhibit conversion to the same anhydrous etravirine phase upon desolvation, and a stable etravirinium oxalate salt {6-amino-5-bromo-4-(4-cyano-2,6-dimethylphenoxy)-2-[(4-cyanophenyl)amino]pyrimidin-1-ium hemioxalate, C20H16BrN6O+·0.5C2O4 2−} were obtained. The crystal structures were solved by single-crystal X-ray diffraction and analyzed by powder X-ray diffraction, and the intermolecular interactions were explored by Hirshfeld surface analysis. Lattice energies were evaluated using the atom–atom force field Coulomb–London–Pauli (AA CLP) approximation, which distributes the total energy as four separate contributions: Coulombic, polarization, dispersion and repulsion. The formation of the solvates and the oxalate salt was further characterized by thermal analysis and IR spectroscopy.


2020 ◽  
Vol 61 (1) ◽  
pp. 151-159
Author(s):  
M. B. de Freitas-Marques ◽  
M. I. Yoshida ◽  
C. Fernandes ◽  
B. L. Rodrigues ◽  
W. N. Mussel

2019 ◽  
Vol 31 (8) ◽  
pp. 1755-1761
Author(s):  
K. Naresh ◽  
B.N. Sivasankar

A new copper complex of pyridine-2,6-dicarboxylate containing hydrazinium cation, formulated as (N2H5)2[Cu(PDC)2]·4H2O (PDC = pyridine-2,6-dicarboxylate) has been synthesized from copper(II) nitrate, hydrazine hydrate and pyridine-2,6-dicarboxylic acid as a single crystal and characterized by elemental analysis and spectroscopic (IR and UV-visible), thermal (TG/DTG), single crystal X-ray diffraction and biological studies. A six-coordinate complex with a distorted octahedral geometry around Cu(II) ion is proposed and confirmed by X-ray single crystal method. The structure reveals that two pyridine-2,6-dicarboxylate species acting as tridentate ligands and hydrazinium cation present as a counter ion along with non-coordinated four water molecules. The structural units of copper(II) is mutually held by the hydrogen bonds and π···π and C–O···π interactions. The copper(II) complex is connected to one another via O–H···O hydrogen bonds, forming water clusters, which plays an important role in the stabilization of the crystal structure. In the water clusters, the water molecules are trapped by the cooperative association of coordination interactions as well as hydrogen bonds. Both cation and anion interactions and crystal from various types of intermolecular contacts and their importance were explored using Hirshfeld surface analysis. This indicates that O···H/H···O interactions are the superior interactions conforming excessive H-bond in the molecular structure. The interaction of copper(II) complex with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopic technique. The electronic evidence strongly shows that the compound interacts with calf thymus through intercalation with a binding constant of Kb = 5.7 × 104 M–1.


Sign in / Sign up

Export Citation Format

Share Document