Optimization of Agrobacterium-Mediated Genetic Transformation and Regeneration of Transgenic Plants in Indian Cultivar of Barley (Hordeum vulgare L. cv. BL 2)

Author(s):  
Teena Yadav ◽  
S. L. Kothari ◽  
Sumita Kachhwaha
Plant Science ◽  
2007 ◽  
Vol 172 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Ashok K. Shrawat ◽  
Dirk Becker ◽  
Horst Lörz

Genome ◽  
2009 ◽  
Vol 52 (2) ◽  
pp. 166-174 ◽  
Author(s):  
Youn-Seb Shim ◽  
K. Peter Pauls ◽  
Ken J. Kasha

The objective of this study was to determine when DNA synthesis occurred during pretreatments of cultured barley ( Hordeum vulgare L.) microspores and during their preparation for particle bombardment. Based on this information, an investigation of the influence of cell cycle stage on the ability to obtain homozygous transgenic plants by particle bombardment will be presented in paper II of this series. It was hypothesized that the introduction of foreign genes at the G1 cell cycle stage in cultured uninucleate microspores would produce homozygous transgenic plants. Experiments were conducted with two different commonly used pretreatments to induce microspore embryogenesis: cold (4 °C) for 21days and cold plus 0.3 mol/L mannitol for 4 days. After pretreatment, the microspores were placed in a higher osmotic medium for 4 h prior to and for 18 h following bombardment. It was confirmed that during the cold plus mannitol pretreatment, there was no apparent change in the cell cycle stage, with the majority of the microspores remaining at the G1 stage. While in the cold for 21 days, the microspores progressed slowly through to G2, with a few progressing further into the mitosis and binucleate stages. Hourly DNA density measurements that were taken during the 4 h osmotic adjustment period following the cold plus mannitol pretreatment indicated that DNA synthesis began during this period at 25 °C, while at 4 °C, there was no apparent change in cell cycle stage or in DNA density. Thus, one might expect to find a higher frequency of homozygous doubled haploids by maintaining the temperature low during the 4 h osmotic adjustment period following the cold plus mannitol pretreatment than following the 21 day cold pretreatment. However, it is also not known what effect the temperatures during the whole high-osmotic treatments will have on the rate and time of incorporation of the transgene.


2006 ◽  
Vol 4 (2) ◽  
pp. 251-261 ◽  
Author(s):  
Jochen Kumlehn ◽  
Liliya Serazetdinova ◽  
Goetz Hensel ◽  
Dirk Becker ◽  
Horst Loerz

Author(s):  
R.H.M. Cross ◽  
C.E.J. Botha ◽  
A.K. Cowan ◽  
B.J. Hartley

Senescence is an ordered degenerative process leading to death of individual cells, organs and organisms. The detection of a conditional lethal mutant (achloroplastic) of Hordeum vulgare has enabled us to investigate ultrastructural changes occurring in leaf tissue during foliar senescence.Examination of the tonoplast structure in six and 14 day-old mutant tissue revealed a progressive degeneration and disappearance of the membrane, apparently starting by day six in the vicinity of the mitochondria associated with the degenerating proplastid (Fig. 1.) where neither of the plastid membrane leaflets is evident (arrows, Fig. 1.). At this stage there was evidence that the mitochondrial membranes were undergoing retrogressive changes, coupled with disorganization of cristae (Fig. 2.). Proplastids (P) lack definitive prolamellar bodies. The cytoplasmic matrix is largely agranular, with few endoplasmic reticulum (ER) cisternae or polyribosomal aggregates. Interestingly, large numbers of actively-budding dictysomes, associated with pinocytotic vesicles, were observed in close proximity to the plasmalemma of mesophyll cells (Fig. 3.). By day 14 however, mesophyll cells showed almost complete breakdown of subcellular organelle structure (Fig. 4.), and further evidence for the breakdown of the tonoplast. The final stage of senescence is characterized by the solubilization of the cell wall due to expression and activity of polygalacturonase and/or cellulose. The presence of dictyosomes with associated pinocytotic vesicles formed from the mature face, in close proximity to both the plasmalemma and the cell wall, would appear to support the model proposed by Christopherson for the secretion of cellulase. This pathway of synthesis is typical for secretory glycoproteins.


Sign in / Sign up

Export Citation Format

Share Document