Three Dimensional Parametric Analyses of Stress Concentration Factor and Its Mitigation in Isotropic and Orthotropic Plate with Central Circular Hole Under Axial In-Plane Loading

2015 ◽  
Vol 97 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Shubhrata Nagpal ◽  
Nitin Kumar Jain ◽  
Shubhashis Sanyal
2002 ◽  
Vol 37 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Q. Z Wang

First, based on an approximate analysis, simple closed-form expressions of the stress concentration factor (SCF) for two- or three-dimensional models with a circular hole or a spherical cavity in a finite domain are derived. Then, an asymptotic method is adopted to improve the accuracy of the derived solutions for an extremely large circular hole or spherical cavity, when the remaining ligament approaches zero. Exact limit SCF values for these two kinds of models were given by Koiter; these values are used for the adjustment of the coefficients in the SCF expressions. Finally, simple SCF formulae for these finite domain problems are obtained, their accuracy is demonstrated to be very good by comparison with the available data from the literature, and the asymptotic validity is guaranteed.


2013 ◽  
Vol 03 (03) ◽  
pp. 153-159 ◽  
Author(s):  
Murilo Augusto Vaz ◽  
Julio Cesar Ramalho Cyrino ◽  
Gilson Gomes da Silva

2012 ◽  
Vol 12 (6) ◽  
Author(s):  
Dr. Nitin Jain

A comprehensive plane stress finite element study is made for reduction of stress concentration factor (SCF) in a uni-axially loaded infinite width rectangular isotropic/orthotropic plate with central circular hole. The finite element formulation was carried out by the analysis section of the package ANSYS. With the help of present work, stress concentration can be reduced up to 24.4 % in an isotropic and 31 % in an orthotropic plate by introducing four coaxial auxiliary holes on either side of main hole. The study reveals that the introduction of these holes helps to smooth flow of the tensile stress past the main hole and result a reduction in stress concentration factor. With such reduction in maximum stress levels, the improvement in fatigue life of a component can be significant.


Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


2007 ◽  
Vol 353-358 ◽  
pp. 74-77
Author(s):  
Zheng Yang ◽  
Chong Du Cho ◽  
Ting Ya Su ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

Based on detailed three-dimensional finite element analyses, elastic stress and strain field of ellipse major axis end in plates with different thickness and ellipse configurations subjected to uniaxial tension have been investigated. The plate thickness and ellipse configuration have obvious effects on the stress concentration factor, which is higher in finite thickness plates than in plane stress and plane strain cases. The out-of-plane stress constraint factor tends the maximum on the mid-plane and approaches to zero on the free plane. Stress concentration factors distribute ununiformly through the plate thickness, the value and location of maximum stress concentration factor depend on the plate thickness and the ellipse configurations. Both stress concentration factor in the middle plane and the maximum stress concentration factor are greater than that under plane stress or plane strain states, so it is unsafe to suppose a tensioned plate with finite thickness as one undergone plane stress or plane strain. For the sharper notch, the influence of three-dimensional stress state on the SCF must be considered.


1965 ◽  
Vol 16 (1) ◽  
pp. 15-32 ◽  
Author(s):  
W. H. Wittrick

SummaryThis paper is concerned with the effectiveness of reinforcing a hole in a plate on one surface only. The particular problem considered is that of a circular hole in a plate of infinite extent, subjected to axially symmetrical tension at infinity, when the reinforcement consists of an annular plate on one surface. Because of the interaction between bending and stretching, the problem is highly non-linear and it has only been possible to solve it for certain limiting cases. The stress concentration factor depends on a dimensionless parameter proportional to the tension at infinity. It is shown that the stress concentration factor is increased, because of the eccentricity of the reinforcement, if the parameter is small, but for values of the parameter greater than a certain minimum the stress concentration factor is decreased. The results also make it quite clear that there is no possibility of obtaining reasonably accurate results by linearisation of the equations.


Sign in / Sign up

Export Citation Format

Share Document