Three dimensional analysis for effect of fibre orientation on stress concentration factor in fibrous composite plates with central circular hole subjected to in-plane static loading

Author(s):  
N.K. Jain ◽  
M. Banerjee ◽  
S. Sanyal
2012 ◽  
Vol 13 (2) ◽  
Author(s):  
Nitin Jain ◽  
MOON Banerjee ◽  
Shubhashish Sanyal

ABSTRACT: A number of analytical and numerical techniques are available for the two dimensional study of stress concentration around the hole(s) in isotropic and composite plates subjected to in-plane or transverse loading conditions. The information on the techniques for three dimensional analyses of stress concentration factor (SCF) around the hole in isotropic and composite plates subjected to transverse loading conditions is, however, limited. The present work emphasizes on the effect of fibre orientation (q) on the stress concentration factor in fibrous composite plates with central circular hole under transverse static loading condition. The work is carried out for cantilever fibrous composite plates. The effects of thickness -to- width (T/A) and diameter-to-width (D/A) ratios upon SCF at different fibre orientation are studied. Plates of four different composite materials were considered for hole analysis in order to determine the sensitivity of SCF with elastic constants. Deflections in transverse direction were calculated and analysed. All results are presented in graphical form and discussed. The finite element formulation and its analysis were carried out using ANSYS package.ABSTRAK: Terdapat pelbagai teknik analitikal dan numerical untuk kajian tumpuan tegasan dua dimensi di sekeliling lubang-lubang dalam komposit isotropik dan plat pada satah atau keadaan bebanan melintang. Bagaimanapun, maklumat mengenai kaedah analisis tiga dimensi untuk faktor ketumpatan tegasan (SCF) sekitar lubang dalam komposit isotropik dan plat pada keadaan bebanan melintang adalah terhad. Kertas ini menekankan kesan orientasi gentian (q) pada faktor tumpuan tegasan dalam komposit plat bergentian dengan lubang berpusat di bawah keadaan bebanan melintang. Kajian ini dilkukan untuk cantilever plat komposit bergentian. Kesan ketebalan terhadap kelebaran plat (T/A) dan diameter terhadap kelebaran komposit (D/A) dengan SCF pada orientasi gentian berbeza telah dikaji. Plat komposit bagi empat bahan komposit berbeza telah diambilkira bagi kesemua analisis untuk mendapatkan kesensitifan SCF dengan konstan elastic. Defleksi pada arah melintang telah dikira dan dianalisa. Kesemua keputusan telah disembahkan secara grafik dan dibincang. Fomulasi unsur finit dan analisis telah dilaksanakan menggunakan pakej ANSYS.KEYWORDS:          finite element method; stress concentration factor; composites; transverse loading; deflection; elastic constants


2002 ◽  
Vol 37 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Q. Z Wang

First, based on an approximate analysis, simple closed-form expressions of the stress concentration factor (SCF) for two- or three-dimensional models with a circular hole or a spherical cavity in a finite domain are derived. Then, an asymptotic method is adopted to improve the accuracy of the derived solutions for an extremely large circular hole or spherical cavity, when the remaining ligament approaches zero. Exact limit SCF values for these two kinds of models were given by Koiter; these values are used for the adjustment of the coefficients in the SCF expressions. Finally, simple SCF formulae for these finite domain problems are obtained, their accuracy is demonstrated to be very good by comparison with the available data from the literature, and the asymptotic validity is guaranteed.


2013 ◽  
Vol 03 (03) ◽  
pp. 153-159 ◽  
Author(s):  
Murilo Augusto Vaz ◽  
Julio Cesar Ramalho Cyrino ◽  
Gilson Gomes da Silva

2015 ◽  
Vol 664 ◽  
pp. 111-117 ◽  
Author(s):  
Chen Song Dong

A study on the stress concentration of composite plates with a central circular hole subject to axial and bending loads is presented in this paper. The stress concentration of composite plates with a central circular hole subject to axial and bending loading was studied with the aid of finite element analysis. It is shown that geometry has a significant effect on stress concentration, while fibre volume fraction has little effect. The stress concentration factor decreases with increasing hole diameter to plate width ratio. Further analysis shows stress concentration is strongly dependent on anisotropy and the stress concentration factor increases with the longitudinal-transverse moduli ratio.


Author(s):  
MOON BANERJEE ◽  
N. K. JAIN ◽  
S. SANYAL

The present study brings out the thorough analysis of isotropic and orthotropic fixed rectangular plate with center circular hole under transverse static loading condition. In this paper influence of stress concentration and deflection due to singularity for isotropic and orthotropic composite materials under different parametric conditions is obtained. The effect of thickness -to- width of plate (T/A) and diameter-to-width (D/A) ratio upon stress concentration factor (SCF) for different stresses were studied. An isotropic and one composite material were considered for analysis to determine the variation of SCF with elastic constants. Deflection in transverse direction were calculated and analyzed. Results are presented in graphical form and discussed. Three-dimensional finite element models were created using ANSYS software. Results showed that maximum stress appear near the vicinity of the hole at the upper and lower portions of the plate. The effect of material properties, (E1/E2) on SCF for stresses along x, y and z axis is established thorough this analysis.


Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


Sign in / Sign up

Export Citation Format

Share Document