material tailoring
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 42 (12) ◽  
pp. 122701
Author(s):  
Xinyi Li ◽  
Ge Li ◽  
Hongbo Lu ◽  
Wei Zhang

Abstract Multijunction solar cells are the highest efficiency photovoltaic devices yet demonstrated for both space and terrestrial applications. In recent years five-junction cells based on the direct semiconductor bonding technique (SBT), demonstrates space efficiencies >35% and presents application potentials. In this paper, the major challenges for fabricating SBT 5J cells and their appropriate strategies involving structure tunning, band engineering and material tailoring are stated, and 4-cm 2 35.4% (AM0, one sun) 5J SBT cells are presented. Further efforts on detailed optical managements are required to improve the current generating and matching in subcells, to achieve efficiencies 36%–37%, or above.


Author(s):  
Hassan Mohamed Abdelalim Abdalla ◽  
Daniele Casagrande

AbstractOne of the main requirements in the design of structures made of functionally graded materials is their best response when used in an actual environment. This optimum behaviour may be achieved by searching for the optimal variation of the mechanical and physical properties along which the material compositionally grades. In the works available in the literature, the solution of such an optimization problem usually is obtained by searching for the values of the so called heterogeneity factors (characterizing the expression of the property variations) such that an objective function is minimized. Results, however, do not necessarily guarantee realistic structures and may give rise to unfeasible volume fractions if mapped into a micromechanical model. This paper is motivated by the confidence that a more intrinsic optimization problem should a priori consist in the search for the constituents’ volume fractions rather than tuning parameters for prefixed classes of property variations. Obtaining a solution for such a class of problem requires tools borrowed from dynamic optimization theory. More precisely, herein the so-called Pontryagin Minimum Principle is used, which leads to unexpected results in terms of the derivative of constituents’ volume fractions, regardless of the involved micromechanical model. In particular, along this line of investigation, the optimization problem for axisymmetric bodies subject to internal pressure and for which plane elasticity holds is formulated and analytically solved. The material is assumed to be functionally graded in the radial direction and the goal is to find the gradation that minimizes the maximum equivalent stress. A numerical example on internally pressurized functionally graded cylinders is also performed. The corresponding solution is found to perform better than volume fraction profiles commonly employed in the literature.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 519 ◽  
Author(s):  
Reza Noroozi ◽  
Mahdi Bodaghi ◽  
Hamid Jafari ◽  
Ali Zolfagharian ◽  
Mohammad Fotouhi

This article shows how four-dimensional (4D) printing technology can engineer adaptive metastructures that exploit resonating self-bending elements to filter vibrational and acoustic noises and change filtering ranges. Fused deposition modeling (FDM) is implemented to fabricate temperature-responsive shape-memory polymer (SMP) elements with self-bending features. Experiments are conducted to reveal how the speed of the 4D printer head can affect functionally graded prestrain regime, shape recovery and self-bending characteristics of the active elements. A 3D constitutive model, along with an in-house finite element (FE) method, is developed to replicate the shape recovery and self-bending of SMP beams 4D-printed at different speeds. Furthermore, a simple approach of prestrain modeling is introduced into the commercial FE software package to simulate material tailoring and self-bending mechanism. The accuracy of the straightforward FE approach is validated against experimental observations and computational results from the in-house FE MATLAB-based code. Two periodic architected temperature-sensitive metastructures with adaptive dynamical characteristics are proposed to use bandgap engineering to forbid specific frequencies from propagating through the material. The developed computational tool is finally implemented to numerically examine how bandgap size and frequency range can be controlled and broadened. It is found out that the size and frequency range of the bandgaps are linked to changes in the geometry of self-bending elements printed at different speeds. This research is likely to advance the state-of-the-art 4D printing and unlock potentials in the design of functional metastructures for a broad range of applications in acoustic and structural engineering, including sound wave filters and waveguides.


2020 ◽  
Vol 978 ◽  
pp. 257-263
Author(s):  
Mahesh ◽  
Kalyan Kumar Singh

FRP laminates are used in several industries such as automobile, aircraft’s, spacecraft’s, defense and etc.., where high strength-to-weight ratio is the primary criteria. FRP laminates offer high design and material tailoring properties but are highly susceptible to delamination and debonding under out-of-plane low velocity impact which induces barely visible impact damage (BVID) inside the structures. A lot of research investigation is going on related to damage resistance behavior of FRP laminates under out-of-plane impact loading. But very less concentration is paid to the FRP laminates behavior under in-plane low impact loading. In this numerical analysis in-plane low velocity impact loading is carried out on a bidirectional plain woven glass fiber reinforced epoxy laminate (GFRP) using LS-DYNA. A hemispherical impactor of mass 5kg and diameter of 10mm is impacted at 0.5, 1.0 and 1.5m/sec velocity on [(00/900)/(+450/-450)/(+450/-450)/(00/900)]S layup design. Two boundary conditions complete edge and corner constraining boundary conditions are considered for numerical analysis. Force vs. time, energy vs. time, displacement vs. time plots are used to evaluate the analysis.


2019 ◽  
Vol 48 (30) ◽  
pp. 11391-11403 ◽  
Author(s):  
Vivek Shukla ◽  
Ashish Bhatnagar ◽  
Sweta Singh ◽  
Pawan K. Soni ◽  
Satish K. Verma ◽  
...  

The present study deals with the material tailoring of Mg(NH2)2–2LiH through dual borohydrides: the reactive LiBH4 and the non-reactive NaBH4.


2018 ◽  
Vol 34 (5) ◽  
pp. 936-948 ◽  
Author(s):  
Fayyaz Nosouhi Dehnavi ◽  
Ali Parvizi ◽  
Karen Abrinia

Sign in / Sign up

Export Citation Format

Share Document