Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

2017 ◽  
Vol 100 (1) ◽  
pp. 153-163 ◽  
Author(s):  
N. Srinivasa Reddy ◽  
Soumen Sen ◽  
Sumit Pal ◽  
Sankar Nath Shome
2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Vinod Kumar Soni ◽  
R. L. Shrivastava ◽  
S. P. Untawale ◽  
Kshitij Shrivastava

Concentrated solar power (CSP) is a mature and efficient technology to cater the large-scale demand of hot water. Conventional reflectors/mirrors in CSP share 50% of total system cost. High installation as well as O&M cost is the major concern in reflector-based CSP. Apart from the above, manufacturing defects and adverse service environment cause premature degradation of reflectors and substantial drop in efficiency and service life. Performance analysis of an innovative optically concentrated solar water heater (OCSWH) using plurality of Fresnel lenses of poly methyl methacrylate (PMMA) is presented in the work. Size and yield of any solar water heater (SWH) are mainly dependent on its aperture area, output temperature, and mass flow rate, which are termed herein as critical parameters. Series of experimentations is carried out by varying critical design and operating parameters viz. aperture area, outlet temperature, and rate of mass flow, and similar experimentation is also carried out on commercially available flat plate SWH to compare its performance. Loss of heat from riser and header pipes is restricted by application of effective insulation. Substantial improvement in collector efficiency, increase in rate of mass flow, and rise in discharge temperature with reference to flat plate collector are noted. Economics is also studied covering life cycle cost (LCC), life cycle saving (LCS), and energy payback period.


Author(s):  
Abhishek Behera ◽  
Chandan Kumar Sethi ◽  
Saroj Kumar Acharya ◽  
Pragyan P. Patnaik

1984 ◽  
pp. 1-15
Author(s):  
Mohamad Jamil ◽  
Prof. Madya Amer Nordin Darus

A computer routine to calculate the thermal performance of several different low temperature types of flat-plate air heaters is to be discussed. Analysis of each type is also described. The programme accepts as input real or simulated flux, collector geometry, air flow rate and enviromental data. It computes temperatures and extracts energy as a function of time of the day. The programme evaluates radiation,convection, conduction and wind losses, and the radiation exchange with the enviromental conditions.The procedure used in the derivation of the governing equations is also described. The prediction of performance provided by this programme is particularly useful in comparing performances of different collectors and for studying a specific collector's performance with changes in enviroment and design parameters which can be controlled to some extent by the designer.


Sign in / Sign up

Export Citation Format

Share Document