scholarly journals Successive approximations for random coupled Hilfer fractional differential systems

Author(s):  
Fatima Si Bachir ◽  
Saïd Abbas ◽  
Maamar Benbachir ◽  
Mouffak Benchohra

AbstractIn this paper, we study the global convergence of successive approximations as well as the uniqueness of the random solution of a coupled random Hilfer fractional differential system. We prove a theorem on the global convergence of successive approximations to the unique solution of our problem. In the last section, we present an illustrative example.

2007 ◽  
Vol 17 (11) ◽  
pp. 3965-3983 ◽  
Author(s):  
WEIHUA DENG

This paper discusses the stair function approach for the generation of scroll grid attractors of fractional differential systems. The one-directional (1-D) n-grid scroll, two-directional (2-D) (n × m)-grid scroll and three-directional (3-D) (n × m × l)-grid scroll attractors are created from a fractional linear autonomous system with a simple stair function controller. Being similar to the scroll grid attractors of classical differential systems, the scrolls of 1-D n-grid scroll, 2-D (n × m)-grid scroll and 3-D (n × m × l)-grid scroll attractors are located around the equilibria of fractional differential system on a line, on a plane or in 3D, respectively and the number of scrolls is equal to the corresponding number of equilibria.


Author(s):  
Ubong D. Akpan

In this paper, the stability of non-integer differential system is studied using Riemann-Liouville and Caputo derivatives. The stability notion for determining the stability/asymptotic stability or otherwise fractional differential system is given. Example is provided to demonstrate the effectiveness of the result.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Fengrong Zhang ◽  
Changpin Li ◽  
YangQuan Chen

This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some other sufficient conditions on stability are also presented.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
XuTing Wei ◽  
XuanZhu Lu

The paper gives sufficient conditions on the existence of periodic solution for a class of compound singular fractional differential systems with delay, involving Nishimoto fractional derivative. Furthermore, for the particular functions, the necessary conditions on the existence of periodic solution are also derived. Especially, for two-dimensional compound singular fractional differential equation with delay, the criteria of existence of periodic solution are obtained. Finally, two examples are presented to verify the validity of criteria.


Author(s):  
Ubong D. Akpan

In this work, the effect of perturbation on linear fractional differential system is studied. The analysis is done using Riemann-Liouville derivative and the conclusion extended to using Caputo derivative since the result is similar. Conditions for determining the stability and asymptotic stability of perturbed linear fractional differential system are given.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


Sign in / Sign up

Export Citation Format

Share Document