scholarly journals On Probability Distribution of Chloride Diffusion Coefficient for Recycled Aggregate Concrete

2016 ◽  
Vol 10 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Jingwei Ying ◽  
Jianzhuang Xiao ◽  
Qiujiang Meng
2011 ◽  
Vol 477 ◽  
pp. 56-64 ◽  
Author(s):  
Nattapong Damrongwiriyanupap ◽  
Yu Chang Liang ◽  
Yun Ping Xi

In recent years, recycled aggregate concrete has been used in reinforced concrete structures. Concrete structures exposed to chloride environment often encountera premature deterioration due to corrosion of steel reinforcement. In order to avoid unplanned maintenances or repairs, it is necessary to develop a reliable prediction model for the chloride diffusion in concrete. The basic formulation of the transport theory will be presented first and then its application to Recycled Aggregate Concrete (RAC) will follow. Chloride diffusion in RAC is different from the diffusion in regular concrete, because the material parameters of RAC such as chloride diffusion coefficient are different from those of regular concrete. In this paper, a multi-scale and multi-phase model will be developed to characterize theinternal structure of the recycled aggregate with a layer of residual cement paste on the surface of natural aggregate and another layer of surface treatment material on the surface of the residual cement paste. The multi-scale and multi-phase model will also be used to characterize the chloride diffusion coefficient of RAC. The numerical analysis of the diffusion equations is performed by using finite element method.


2010 ◽  
Vol 168-170 ◽  
pp. 1404-1408
Author(s):  
He Ying Qin ◽  
Yan Lin Zhao ◽  
Bo Guang Luo ◽  
Yi Hu Chen

The study presented herein has been carried out in order to investigate the chloride diffusivity of recycled aggregate concrete (RAC). Meanwhile, the effect of the binder type, involving cement replacement materials such as, fly ash, slag and silica fume on the chloride diffusivity has also been investigated. For this purpose, RAC and concrete containing the different type of binders with w/b ratios of 0.35, 0.40, 0.45, 0.50, 0.55, and 0.60 were used. As a result, the chloride diffusion coefficient of RAC is higher than that of natural concrete and the partial replacement of cement with fly ash, slag and silica fume is effective in decrease in the chloride diffusion coefficient, measured by a rapid chloride conductivity test.


2011 ◽  
Vol 261-263 ◽  
pp. 104-110
Author(s):  
Hai Long Wang ◽  
Jun Jie Wang ◽  
Xiao Yan Sun ◽  
Juan Cheng

A three-part model (mortar, original concrete and ITZ) was established in this study to analyze the chloride coefficient of the new interfacial transition zone (ITZ) in recycled aggregate concrete (RAC). Based on this model, a formula for calculation was derived from the chloride transport characteristics in the steady state. Two types of RAC were used to study the properties of ITZ by steady-state migration test and Scanning Electron Microscope (SEM) method. The results indicate that the chloride diffusion coefficient of new ITZ in RAC is about 1 to 4 cm2/year, and that the addition of superfine phosphorous slag (PHS) not only reduces the chloride diffusion coefficient of mortar but also decreases the thickness and the chloride diffusion coefficient of new ITZ in RAC due to its pozzolanic reaction effect. The chloride permeability of mortar containing 20% PHS is only 1/5 of that in normal RAC. The chloride diffusion coefficient of ITZ in normal RAC is about 10 times greater than that of ordinary mortar. When modified with PHS and superplasticizer, the permeability of chloride in new ITZ is 3 to 7 times greater than that in the ordinary bulk cement paste. Furthermore, the mechanism and the effects of superfine phosphorous slag (PHS) on the resistivity of chloride permeation were discussed on basis of the experimental results and the images of SEM.


2022 ◽  
Vol 321 ◽  
pp. 126273
Author(s):  
Xianfeng Wang ◽  
Guanhong Du ◽  
Lianmin Cai ◽  
Jun Ren ◽  
Weilun Wang

2017 ◽  
Vol 15 (01) ◽  
pp. 1750078 ◽  
Author(s):  
Yuching Wu ◽  
Jianzhuang Xiao

In this study, the multiscale stochastic finite element method (MsSFEM) was developed based on a novel digital image kernel to make analysis for chloride diffusion in recycled aggregate concrete (RAC). It is significant to study the chloride diffusivity in RAC, because when RAC was applied in coastal areas, chloride-induced rebar corrosion became a common problem for concrete infrastructures. The MsSFEM was an efficient tool to examine the effect of microscopic randomness of RAC on the chloride diffusivity. Based on the proposed digital image kernel, the Karhunen–Loeve expansion and the polynomial chaos were used in the stochastic homogenization process. To investigate advantages and disadvantages of both generation and application of the proposed digital image kernel, it was compared with many other kernels. The comparisons were made between the method to develop the digital image kernel, which is called the pixel-matrix method, and other methods, and between the application of the kernel and various other kernels. It was shown that the proposed digital image kernel is superior to other kernels in many aspects.


2010 ◽  
Vol 168-170 ◽  
pp. 755-761
Author(s):  
Ya Guang Zhu ◽  
Jian Guo Dai ◽  
Qiu Yi Li

Silane-base water repellent agents can significantly suppress the capillary water absorption of concrete and consequently improve the durability of the concrete and protects the internal steel reinforcement. This paper presents test result on chloride diffusion property of natural and recycled aggregate concrete externally and internally treated with silane-based water repellent agents based on the ASTM C1202 test method. The effects of concrete cracks on the chloride diffusion property were also investigated. After the tests, the impregnation depth of silane into the natural and recycled aggregate concrete, the total charges passing the testing samples and penetration depth of chloride during the testing period were determined. It was found that, for both cracked and uncracked concrete, externally treated natural and recycled aggregate concrete performed better than internally treated ones. The water repellent treatment method is more effective for recycled aggregate concrete than natural aggregate concrete because a deeper impregnation depth can be achieved in the former case.


2014 ◽  
Vol 57 (12) ◽  
pp. 2357-2370 ◽  
Author(s):  
JianZhuang Xiao ◽  
JingWei Ying ◽  
Vivian W. Y. Tam ◽  
Ian R. Gilbert

2010 ◽  
Vol 150-151 ◽  
pp. 1379-1382 ◽  
Author(s):  
Hong Bing Zhu ◽  
Xiu Li

To investigate the residual strength degradation of recycled aggregate concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. Fifty 100mm ×100mm ×100mm specimens of recycled aggregate concrete were tested under uniaxial compressive fatigue loading. Based on probability distribution of the residual strength of concrete under fatigue loading, the P-R-N curves are obtained based on test data, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. The curves can be used to predict the residual strength with reliability.


Sign in / Sign up

Export Citation Format

Share Document