Microstructural analysis and mechanical behavior of the HAZ in an API 5L X70 steel welded by GMAW process

Author(s):  
Vinícius dos Santos Dagostini ◽  
Ariane Neves de Moura ◽  
Temístocles de Sousa Luz ◽  
Nicolau Apoena Castro ◽  
Marcos Tadeu D’Azeredo Orlando ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
David Jeronimo Busquets ◽  
Carlos Bloem ◽  
Amparo Borrell ◽  
Maria Dolores Salvador

The improvement of high temperature materials with lower heat transfer coefficients lead to the development of thermal barrier coatings (TBCs). One of the most widely used materials for thermal barrier coatings is Y2O3 stabilized ZrO2 (Y-TZP) because of its excellent shock resistance, low thermal conductivity, and relatively high coefficient of thermal expansion. The aim of this work is to study the TBCs mechanical behavior with the addition of SiC into the suspension of Y-TZP/Al2O3 by acoustic emission (AE). Additionally, a microstructural analysis and a finite elements model were carried out in order to compare results. The coatings were made by suspension plasma spray (SPS) on metal plates of 70 × 12 × 2 mm3. An intermetallic was deposited as a bond coating, followed by a coating of Y-TZP/Al2O3 with and without 15 wt.% SiC, with thicknesses between 87 and 161 μm. The AE becomes a fundamental tool in the study of the mechanical behavior of thermal barriers. The use of wavelet transforms streamlines the study and analysis of recorded sound spectra. The crack generation arises at very low stress levels.


2002 ◽  
Vol 17 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Y. Qin ◽  
J. S. Lee ◽  
C. S. Lee

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.


2009 ◽  
Vol 40 (2) ◽  
pp. 342-353 ◽  
Author(s):  
Timothy B. Hilditch ◽  
Ilana B. Timokhina ◽  
Leigh T. Robertson ◽  
Elena V. Pereloma ◽  
Peter D. Hodgson

Author(s):  
Necmi Dusunceli ◽  
Catalina Gabriela Sanporean ◽  
Aleksey D Drozdov ◽  
Jesper de Claville Christiansen ◽  
Florina-Elena Comanici

Mechanical behavior dependency of the poly(N-isopropylacrylamide) hydrogel related to the amount of initiator, crosslinker, and nanoparticles was investigated. An experimental approach has been undertaken to observe these dependencies and assess the amount of initiator (ammonium persulfate), crosslinker (N, N′-methylene-bisacrylamide), and nanoparticles (graphene oxide) on the macroscopic responses of poly(N-isopropylacrylamide). Different amounts of initiator, crosslinker, and nanoparticle were used to manufacture specimens for the compression test. The specimens were subjected to compressive loading up to breakage to investigate the breaking behavior of poly(N-isopropylacrylamide). The responses of these specimens indicated that the mechanical behavior of poly(N-isopropylacrylamide) was highly nonlinear and depends on these ingredients. The mechanical responses of poly(N-isopropylacrylamide) were simulated using the ideal network model. The simulation results of the mathematical model substantially complied with the experimental data of poly(N-isopropylacrylamide). In addition, a more in-depth microstructural analysis was performed on these specimens. The analysis results allowed us to correlate the dependent amounts of the ingredients on the nonlinear, mechanical behavior of poly(N-isopropylacrylamide).


Sign in / Sign up

Export Citation Format

Share Document