Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites

2007 ◽  
Vol 38 (6) ◽  
pp. 1455-1461 ◽  
Author(s):  
S.M. Luz ◽  
A.R. Gonçalves ◽  
A.P. Del’Arco
2021 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
David Jeronimo Busquets ◽  
Carlos Bloem ◽  
Amparo Borrell ◽  
Maria Dolores Salvador

The improvement of high temperature materials with lower heat transfer coefficients lead to the development of thermal barrier coatings (TBCs). One of the most widely used materials for thermal barrier coatings is Y2O3 stabilized ZrO2 (Y-TZP) because of its excellent shock resistance, low thermal conductivity, and relatively high coefficient of thermal expansion. The aim of this work is to study the TBCs mechanical behavior with the addition of SiC into the suspension of Y-TZP/Al2O3 by acoustic emission (AE). Additionally, a microstructural analysis and a finite elements model were carried out in order to compare results. The coatings were made by suspension plasma spray (SPS) on metal plates of 70 × 12 × 2 mm3. An intermetallic was deposited as a bond coating, followed by a coating of Y-TZP/Al2O3 with and without 15 wt.% SiC, with thicknesses between 87 and 161 μm. The AE becomes a fundamental tool in the study of the mechanical behavior of thermal barriers. The use of wavelet transforms streamlines the study and analysis of recorded sound spectra. The crack generation arises at very low stress levels.


2002 ◽  
Vol 17 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Y. Qin ◽  
J. S. Lee ◽  
C. S. Lee

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.


2009 ◽  
Vol 40 (2) ◽  
pp. 342-353 ◽  
Author(s):  
Timothy B. Hilditch ◽  
Ilana B. Timokhina ◽  
Leigh T. Robertson ◽  
Elena V. Pereloma ◽  
Peter D. Hodgson

e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Sie Chin Tjong ◽  
Suping Bao

AbstractIsotactic polypropylene (PP) nanocomposites containing 0.1, 0.3, 0.5 and 1.0 wt % silver (Ag) nanoparticles were prepared via melt compounding in a twin-screw extruder followed by injection molding The effects of the Ag nanoparticle additions on the structure and mechanical behavior of PP were studied using DSC, WXRD, optical microscopy, tensile and Izod impact techniques. DSC and WXRD measurements showed that the addition of only 0.1 wt% Ag nanoparticles promote the formation of β-form PP. Further increasing Ag content would not lead to additional increase of the β-PP phase content. The induced β- form PP phase is beneficial to enhance the impact strength and tensile ductility of the PP/Ag nanocomposites.


2016 ◽  
Vol 19 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Sandra Maria da Luz ◽  
Sirlene Maria da Costa ◽  
Adilson Roberto Gonçalves ◽  
Antônio Pascoal Del'Arco Junior ◽  
Silgia Aparecida da Costa

2019 ◽  
Vol 33 (9) ◽  
pp. 1175-1195 ◽  
Author(s):  
Arun M Panicker ◽  
Rose Maria ◽  
KA Rajesh ◽  
TO Varghese

Waste natural fibers, bit coir fiber residue of traditional coir industries, and sugarcane bagasse fibers were subjected to chemical modifications via alkaline steam explosion treatments toward the extraction of reinforcing fibers with better compatibility and reinforcing characteristics in the polymer matrix. The treated fibers were utilized in the fabrication of composites with polypropylene (PP) as the base polymer with the aid of maleic anhydride–grafted PP as the compatibilizer. Percent composition of fiber in the composites was decided to facilitate maximum replacement of the matrix and further applicability in large-scale continuous polymeric production processes. Mechanical, thermal, and morphological characterization of the composites reveals the best composition to be of 30% composition, in the added view of maximum replacement of polymer matrix with the reinforcing filler, retention of requisite properties, reduced cost of manufacture and inventory, and reduction in the carbon footprint per unit dimensions in comparison with the wholly polymer component. The thermal properties of coir fiber-reinforced composites showed good improvement up to 134.5°C increase in onset degradation temperature while retaining matrix properties for sugarcane bagasse-reinforced composites.


Sign in / Sign up

Export Citation Format

Share Document