scholarly journals Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ayat Ahmed Alrasheid ◽  
Mazin Yousif Babiker ◽  
Talal Ahmed Awad
2020 ◽  
Vol 16 (10) ◽  
pp. 753-758
Author(s):  
Jayaraman Selvaraj ◽  

Cyclooxygenase-2 (COX-2) is liked with breast cancer. Therefore, it is of interest to design and develop new yet effective compounds against COX-2 from medicinal plants such as the natural alkaloid compounds. We document the optimal binding features of aristolochicacid with COX-2 protein for further consideration.


2021 ◽  
Vol 17 (5) ◽  
pp. 568-672
Author(s):  
S. Saleem Basha ◽  

The use of “kabasura kudineer” (liquid soup made from Indian medicinal plants) for combating COVID-19 has been common in the states of Tamilnadu and Puducherry, India during the pandemic. Therefore, it is of interest to document the molecular docking analysis of IL-6 inhibitors with potential antiviral compounds from “kabasura kudineer” extract. We show the optimal binding features of gallic acid and luteolin with the Interleukin-6 protein for further consideration.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Yike Yue ◽  
Yongsheng Chen ◽  
Sheng Geng ◽  
Guizhao Liang ◽  
Benguo Liu

Fisetin is a flavonoid widespread in vegetables, fruits and medicinal plants. The in vitro antioxidant and α-glucosidase inhibitory activities of fisetin were systemically investigated in this study. The DPPH and ABTS radical scavenging performance of fisetin was higher than that of BHA. In the ORAC and PSC assays, fisetin also exhibited strong antioxidant activity. The α-glucosidase inhibitory activity of fisetin (IC50, 9.38±0.35 μg/mL) was significantly superior to that of acarbose (IC50, 1.07±0.15 mg/mL). Its inhibition type was determined to be a mixed competitive and non-competitive inhibition mode. Molecular docking analysis suggested it could exert the α-glucosidase inhibitory role by forming hydrogen bonds with the TRP391, ASP392, ARG428 and ASP568 residues of α-glucosidase.


Sign in / Sign up

Export Citation Format

Share Document