Glaser Coupling of Substituted Anthracene Diynes on a Non-metallic Surface at the Vapor-Solid Interface

2021 ◽  
Vol 37 (5) ◽  
pp. 1143-1148
Author(s):  
Yuan Fang ◽  
Zahra Heydari ◽  
Chenghao Liu ◽  
Nianyue Zhang ◽  
Louis A. Cuccia ◽  
...  
Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


1987 ◽  
Vol 48 (3) ◽  
pp. 389-405 ◽  
Author(s):  
P. Nozières ◽  
M. Uwaha

Synthesis ◽  
2009 ◽  
Vol 2009 (03) ◽  
pp. 395-398 ◽  
Author(s):  
Gerhard Hilt ◽  
Christoph Hengst ◽  
Marion Arndt
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuze Lin ◽  
Yuchuan Shao ◽  
Jun Dai ◽  
Tao Li ◽  
Ye Liu ◽  
...  

AbstractIntentional doping is the core of semiconductor technologies to tune electrical and optical properties of semiconductors for electronic devices, however, it has shown to be a grand challenge for halide perovskites. Here, we show that some metal ions, such as silver, strontium, cerium ions, which exist in the precursors of halide perovskites as impurities, can n-dope the surface of perovskites from being intrinsic to metallic. The low solubility of these ions in halide perovskite crystals excludes the metal impurities to perovskite surfaces, leaving the interior of perovskite crystals intrinsic. Computation shows these metal ions introduce many electronic states close to the conduction band minimum of perovskites and induce n-doping, which is in striking contrast to passivating ions such as potassium and rubidium ion. The discovery of metallic surface doping of perovskites enables new device and material designs that combine the intrinsic interior and heavily doped surface of perovskites.


Sign in / Sign up

Export Citation Format

Share Document