Are the UK Systems of Innovation and Evaluation of Medical Devices Compatible? The Role of NICE’s Medical Technologies Evaluation Programme (MTEP)

2014 ◽  
Vol 12 (4) ◽  
pp. 347-357 ◽  
Author(s):  
A. M. Chapman ◽  
C. A. Taylor ◽  
A. J. Girling
Heart ◽  
2018 ◽  
Vol 104 (22) ◽  
pp. 1817-1822 ◽  
Author(s):  
Peter H Groves ◽  
Chris Pomfrett ◽  
Mirella Marlow

The National Institute for Health and Care Excellence (NICE) Medical Technologies Evaluation Programme (MTEP) promotes the adoption of innovative diagnostic and therapeutic technologies into National Health Service (NHS) clinical practice through the publication of guidance and briefing documents. Since the inception of the programme in 2009, there have been 7 medical technologiesguidance, 3 diagnostics guidance and 23 medtechinnovation briefing documents published that are relevant to the heart and circulation. Medical technologies guidance is published by NICE for selected single technologies if they offer plausible additional benefits to patients and the healthcare system. Diagnostic guidance is published for diagnostic technologies if they have the potential to improve health outcomes, but if their introduction may be associated with an increase in overall cost to the NHS. Medtechinnovation briefings provide evidence-based advice to those considering the implementation of new medical devices or diagnostic technologies. This review provides reference to all of the guidance and briefing medical technology documents that NICE has published that are relevant to the heart and circulation and reflect on their diverse recommendations. The interaction of MTEP with other NICE programmes is integral to its effectiveness and the means by which consistency is ensured across the different NICE programmes is described. The importance of the input of clinical experts from the cardiovascular professional community and the engagement by NICE with cardiovascular professional societies is highlighted as being fundamental to ensuring the quality of guidance outputs as well as to promoting their implementation and adoption.


Author(s):  
Feryad A. Hussain

Radicalisation to violent action is not just a problem in foreign lands. Research has identified numerous politico–psychosocial factors to explain why young people from the UK are now joining terrorist groups such as ISIS. Our understanding has been expanded by the accounts of “returnees” who have subsequently either self-deradicalised or joined a government deradicalisation programme in the role of an Intervention Provider (IP). These individuals are now key to the deradicalisation programme. This article presents the reflections of a clinical psychologist who worked within a social healthcare team managing psychosocial issues related to radicalisation, in conjunction with an allocated IP. The project involved individuals from the Muslim community and, as such, issues discussed are specific to this group. It is acknowledged that the process in general is universally applicable to all groups though specifics may vary (under Trust agreement, details may not be discussed). This article also aims to share basic information on the current Home Office deradicalisation programme and raises questions about the current intervention. It also offers reflections on how the work of IPs may be facilitated and supported by clinical/counselling psychologists and psychotherapists.


1998 ◽  
Vol 38 (12) ◽  
pp. 51-56 ◽  
Author(s):  
K. Henshilwood ◽  
J. Green ◽  
D. N. Lees

This study investigates human enteric virus contamination of a shellfish harvesting area. Samples were analysed over a 14-month period for Small Round Structured Viruses (SRSVs) using a previously developed nested RT-PCR. A clear seasonal difference was observed with the largest numbers of positive samples obtained during the winter period (October to March). This data concurs with the known winter association of gastroenteric illness due to oyster consumption in the UK and also with the majority of the outbreaks associated with shellfish harvested from this area during the study period. RT-PCR positive amplicons were further characterised by cloning and sequencing. Sequence analysis of the positive samples identified eleven SRSV strains, of both Genogroup I and Genogroup II, occurring throughout the study period. Many shellfish samples contained a mixture of strains with a few samples containing up to three different strains with both Genogroups represented. The observed common occurrence of strain mixtures may have implications for the role of shellfish as a vector for dissemination of SRSV strains. These results show that nested RT-PCR can identify SRSV contamination in shellfish harvesting areas. Virus monitoring of shellfish harvesting areas by specialist laboratories using RT-PCR is a possible approach to combating the transmission of SRSVs by molluscan shellfish and could potentially offer significantly enhanced levels of public health protection.


Author(s):  
Patricia J. Zettler ◽  
Erika Lietzan

This chapter assesses the regulation of medical devices in the United States. The goal of the US regulatory framework governing medical devices is the same as the goal of the framework governing medicines. US law aims to ensure that medical devices are safe and effective for their intended uses; that they become available for patients promptly; and that manufacturers provide truthful, non-misleading, and complete information about the products. US medical device law is different from US medicines law in many ways, however, perhaps most notably because most marketed devices do not require pre-market approval. The chapter explores how the US Food and Drug Administration (FDA) seeks to accomplish its mission with respect to medical devicecough its implementation of its medical device authorities. It starts by explaining what constitutes a medical device and how the FDA classifies medical devices by risk level. The chapter then discusses how medical devices reach the market, the FDA's risk management tools, and the rules and incentives for innovation and competition. It concludes by exploring case studies of innovative medical technologies that challenge the traditional US regulatory scheme to consider the future of medical device regulation.


2013 ◽  
Vol 98 ◽  
pp. 95-105 ◽  
Author(s):  
S. Ulucanlar ◽  
A. Faulkner ◽  
S. Peirce ◽  
G. Elwyn
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 64-88
Author(s):  
James I. J. Green

A custom-made device (CMD) is a medical device intended for the sole use of a particular patient. In a dental setting, CMDs include prosthodontic devices, orthodontic appliances, bruxism splints, speech prostheses and devices for the treatment of obstructive sleep apnoea, trauma prevention and orthognathic surgery facilitation (arch bars and interocclusal wafers). Since 1993, the production and provision of CMDs have been subject to European Union (EU) Directive 93/42/EEC (Medical Device Directive, MDD) given effect in the UK by The Medical Devices Regulations 2002 (Statutory Instrument 2002/618), and its subsequent amendments. Regulation (EU) 2017/745 (Medical Device Regulation, EU MDR) replaces the MDD and the other EU Directive pertaining to Medical Devices, Council Directive 90/385/EEC (Active Implantable Medical Device Directive, AIMDD). The EU MDR was published on 5 April 2017, came into force on 25 May 2017 and, following a three-year transition period was due to be fully implemented and repeal the MDD on 26 May 2020, but was deferred until 26 May 2021 due to the coronavirus disease 2019 (COVID-19) pandemic. In the UK, in preparation for the country’s planned departure from the EU, the EU MDR, with necessary amendments, was transposed into UK law (Medical Devices (Amendment etc.) (EU Exit) Regulations 2019, UK MDR). The UK left the Union on 31 January 2020 and entered a transition period that ended on 31 December 2020, meaning that, from 1 January 2021, dental professionals in Great Britain who prescribe and manufacture CMDs are mandated to do so in accordance with the new legislation while Northern Ireland remains in line with the EU legislation and implementation date. This paper sets out the requirements that relate to the production and provision of CMDs in a UK dental setting.


Sign in / Sign up

Export Citation Format

Share Document