A K-Means Clustering-Based Multiple Importance Sampling Algorithm for Integral Global Optimization

Author(s):  
Chen Wang ◽  
Dong-Hua Wu
2021 ◽  
Vol 11 (9) ◽  
pp. 3871
Author(s):  
Jérôme Morio ◽  
Baptiste Levasseur ◽  
Sylvain Bertrand

This paper addresses the estimation of accurate extreme ground impact footprints and probabilistic maps due to a total loss of control of fixed-wing unmanned aerial vehicles after a main engine failure. In this paper, we focus on the ground impact footprints that contains 95%, 99% and 99.9% of the drone impacts. These regions are defined here with density minimum volume sets and may be estimated by Monte Carlo methods. As Monte Carlo approaches lead to an underestimation of extreme ground impact footprints, we consider in this article multiple importance sampling to evaluate them. Then, we perform a reliability oriented sensitivity analysis, to estimate the most influential uncertain parameters on the ground impact position. We show the results of these estimations on a realistic drone flight scenario.


2017 ◽  
Vol 87 (8) ◽  
pp. 1644-1665 ◽  
Author(s):  
Xiaoyu Xiong ◽  
Václav Šmídl ◽  
Maurizio Filippone

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fanyu Meng ◽  
Wei Shao ◽  
Yuxia Su

Simplicial depth (SD) plays an important role in discriminant analysis, hypothesis testing, machine learning, and engineering computations. However, the computation of simplicial depth is hugely challenging because the exact algorithm is an NP problem with dimension d and sample size n as input arguments. The approximate algorithm for simplicial depth computation has extremely low efficiency, especially in high-dimensional cases. In this study, we design an importance sampling algorithm for the computation of simplicial depth. As an advanced Monte Carlo method, the proposed algorithm outperforms other approximate and exact algorithms in accuracy and efficiency, as shown by simulated and real data experiments. Furthermore, we illustrate the robustness of simplicial depth in regression analysis through a concrete physical data experiment.


2000 ◽  
Vol 13 ◽  
pp. 155-188 ◽  
Author(s):  
J. Cheng ◽  
M. J. Druzdzel

Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AIS-BN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in finite-dimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from different stages of the algorithm. We tested the performance of the AIS-BN algorithm along with two state of the art general purpose sampling algorithms, likelihood weighting (Fung & Chang, 1989; Shachter & Peot, 1989) and self-importance sampling (Shachter & Peot, 1989). We used in our tests three large real Bayesian network models available to the scientific community: the CPCS network (Pradhan et al., 1994), the PathFinder network (Heckerman, Horvitz, & Nathwani, 1990), and the ANDES network (Conati, Gertner, VanLehn, & Druzdzel, 1997), with evidence as unlikely as 10^-41. While the AIS-BN algorithm always performed better than the other two algorithms, in the majority of the test cases it achieved orders of magnitude improvement in precision of the results. Improvement in speed given a desired precision is even more dramatic, although we are unable to report numerical results here, as the other algorithms almost never achieved the precision reached even by the first few iterations of the AIS-BN algorithm.


Sign in / Sign up

Export Citation Format

Share Document