Invariant analysis, conservation laws, and some exact solutions for (2+1)-dimension fractional long-wave dispersive system

2020 ◽  
Vol 39 (4) ◽  
Author(s):  
Ruichao Ren ◽  
Shunli Zhang
2009 ◽  
Vol 64 (9-10) ◽  
pp. 597-603 ◽  
Author(s):  
Zhong Zhou Dong ◽  
Yong Chen

By means of the generalized direct method, we investigate the (2+1)-dimensional dispersive long wave equations. A relationship is constructed between the new solutions and the old ones and we obtain the full symmetry group of the (2+1)-dimensional dispersive long wave equations, which includes the Lie point symmetry group S and the discrete groups D. Some new forms of solutions are obtained by selecting the form of the arbitrary functions, based on their relationship. We also find an infinite number of conservation laws of the (2+1)-dimensional dispersive long wave equations.


2005 ◽  
Vol 63 (5-7) ◽  
pp. e1425-e1434 ◽  
Author(s):  
S. Hamdi ◽  
W.H. Enright ◽  
W. E Schiesser ◽  
J.J. Gottlieb

Author(s):  
Ben Muatjetjeja ◽  
Abdullahi Rashid Adem

AbstractWe compute the conservation laws for the Rosenau-Kortweg de Vries equation coupling with the Regularized Long-Wave equation using Noether’s approach through a remarkable method of increasing the order of the Rosenau-KdV-RLW equation. Furthermore, exact solutions for the Rosenau- KdV-RLW equation are acquired by employing the Kudryashov method.


2016 ◽  
pp. 4437-4439
Author(s):  
Adil Jhangeer ◽  
Fahad Al-Mufadi

In this paper, conserved quantities are computed for a class of evolution equation by using the partial Noether approach [2]. The partial Lagrangian approach is applied to the considered equation, infinite many conservation laws are obtained depending on the coefficients of equation for each n. These results give potential systems for the family of considered equation, which are further helpful to compute the exact solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


Sign in / Sign up

Export Citation Format

Share Document