Distance measures on intuitionistic hesitant fuzzy set and its application in decision-making

2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Xiang Chen ◽  
Chunfeng Suo ◽  
Yongming Li
Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 280 ◽  
Author(s):  
Harish Garg ◽  
Gagandeep Kaur

Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation operators, in this manuscript, we have proposed several weighted and ordered weighted averaging and geometric aggregation operators by using Einstein norm operations, where the preferences related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable properties and relations are also investigated in details. Also, we have proposed two distance measures and its based maximum deviation method to compute the weight vector of the different criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed operators and the presented algorithm is explained with the help of the numerical example. The reliability of the presented decision-making method is explored with the help of testing criteria and by comparing the results of the example with several prevailing studies.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 191
Author(s):  
Wang ◽  
Li ◽  
Zhang ◽  
Han

Multiple attribute decision making (MADM) is full of uncertainty and vagueness due to intrinsic complexity, limited experience and individual cognition. Representative decision theories include fuzzy set (FS), intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), dual hesitant fuzzy set (DHFS) and so on. Compared with IFS and HFS, DHFS has more advantages in dealing with uncertainties in real MADM problems and possesses good symmetry. The membership degrees and non-membership degrees in DHFS are simultaneously permitted to represent decision makers’ preferences by a given set having diverse possibilities. In this paper, new distance measures for dual hesitant fuzzy sets (DHFSs) are developed in terms of the mean, variance and number of elements in the dual hesitant fuzzy elements (DHFEs), which overcomes some deficiencies of the existing distance measures for DHFSs. The proposed distance measures are effectively applicable to solve MADM problems where the attribute weights are completely unknown. With the help of the new distance measures, the attribute weights are objectively determined, and the closeness coefficients of each alternative can be objectively obtained to generate optimal solution. Finally, an evaluation problem of airline service quality is conducted by using the distance-based MADM method to demonstrate its validity and applicability.


Author(s):  
Rupjit Saikia ◽  
Harish Garg ◽  
Palash Dutta

Decision making under uncertainty is a crucial issue and most demanding area of research now a days. Intuitionistic hesitant fuzzy set plays important role in dealing with the circumstances in which decision makers judge an alternative with a collection membership grades and a collection of non-membership grades. This paper contributes a novel and advanced distance measure between Intuitionistic Hesitant fuzzy sets (IHFSs). A comparative analysis of the present distance measure with existing measures is performed first. Afterwards, a case study is carried in multi-criteria decision making problem to exhibit the applicability and rationality of the proposed distance measure. The advantage of the proposed distance measure over the existing distance measures is that in case of deficit number of elements in IHFs, a decision maker can evaluate distance measure without adding extra elements to make them equivalent and furthermore, it works in successfully in all the situations.


Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

AbstractThe complex q-rung orthopair fuzzy set (Cq-ROFS) is the extension of complex Pythagorean fuzzy set (CPFS) in which the sum of the q-power of the real part (imaginary part) of the support for and the q-power of the real part (imaginary part) of the support against is limited by one; however, it is difficult to express the hesitant information. In this study, the conception of complex q-rung orthopair hesitant fuzzy set (Cq-ROHFS) by combining the Cq-ROFS and hesitant fuzzy set (HFS) is proposed, and its properties are discussed, obviously, Cq-ROHFS can reflect the uncertainties in structure and in detailed evaluations. Further, some distance measures (DMs) and cross-entropy measures (CEMs) are developed based on complex multiple fuzzy sets. Moreover, these proposed measures are utilized to solve a multi-criteria decision-making problem based on TOPSIS (technique for order preference by similarity to ideal solution) method. Then, the advantages and superiority of the proposed measures are explained by the experimental results and comparisons with some existing methods.


2021 ◽  
pp. 1-12
Author(s):  
Muhammad Naeem ◽  
Muhammad Ali Khan ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Saifullah Khan

Probabilistic hesitant fuzzy Set (PHFs) is the most powerful and comprehensive idea to support more complexity than developed fuzzy set (FS) frameworks. In this paper, it can explain a novel, improved TOPSIS-based method for multi-criteria group decision-making (MCGDM) problem through the Probabilistic hesitant fuzzy environment, in which the weights of both experts and criteria are completely unknown. Firstly, we discuss the concept of PHFs, score functions and the basic operating laws of PHFs. In fact, to compute the unknown weight information, the generalized distance measure for PHFs was defined based on the Probabilistic hesitant fuzzy entropy measure. Second, MCGDM will be presented with the PHF information-based decision-making process.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 342 ◽  
Author(s):  
Krishankumar ◽  
Ravichandran ◽  
Ahmed ◽  
Kar ◽  
Peng

As a powerful generalization to fuzzy set, hesitant fuzzy set (HFS) was introduced, which provided multiple possible membership values to be associated with a specific instance. But HFS did not consider occurrence probability values, and to circumvent the issue, probabilistic HFS (PHFS) was introduced, which associates an occurrence probability value with each hesitant fuzzy element (HFE). Providing such a precise probability value is an open challenge and as a generalization to PHFS, interval-valued PHFS (IVPHFS) was proposed. IVPHFS provided flexibility to decision makers (DMs) by associating a range of values as an occurrence probability for each HFE. To enrich the usefulness of IVPHFS in multi-attribute group decision-making (MAGDM), in this paper, we extend the Muirhead mean (MM) operator to IVPHFS for aggregating preferences. The MM operator is a generalized operator that can effectively capture the interrelationship between multiple attributes. Some properties of the proposed operator are also discussed. Then, a new programming model is proposed for calculating the weights of attributes using DMs’ partial information. Later, a systematic procedure is presented for MAGDM with the proposed operator and the practical use of the operator is demonstrated by using a renewable energy source selection problem. Finally, the strengths and weaknesses of the proposal are discussed in comparison with other methods.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 557 ◽  
Author(s):  
Jiaru Li ◽  
Fangwei Zhang ◽  
Qiang Li ◽  
Jing Sun ◽  
Janney Yee ◽  
...  

The subject of this study is to explore the role of cardinality of hesitant fuzzy element (HFE) in distance measures on hesitant fuzzy sets (HFSs). Firstly, three parameters, i.e., credibility factor, conservative factor, and a risk factor are introduced, thereafter, a series of novel distance measures on HFSs are proposed using these three parameters. These newly proposed distance measures handle the relationship between the cardinal number and the element values of hesitant fuzzy set well, and are suitable to combine subjective and objective decision-making information. When using these functions, decision makers with different risk preferences are allowed to give different values for these three parameters. In particular, this study transfers the hesitance degree index to a credibility of the values in HFEs, which is consistent with people’s intuition. Finally, the practicability of the newly proposed distance measures is verified by two examples.


2019 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Awanda Amelia Maron ◽  
Yudiantri Asdi

Chen dan Xu memperkenalkan tentang relasi preference hesitant bernilai interval dalam proses pengambilan keputusan kelompok(Group Decision Making/GDM ) [2]. Pada proses GDM digunakan operator-operator untuk mengumpulkan informasi Interval-valued Hesitant Fuzzy Set (IVHFS) [2]. Konsep himpunan kabur hesitant bernilai interval banyak digunakan pada teori pengambilan keputusan. akan tetapi pada penelitian ini hanya dibatasi kajian aljabar yaitu dikaji tentang sifat-sifat operasi pada elemen kabur hesitant bernilai interval dan bentuk operator-operator pada IVHFS. Operasi ring sum, ring product, irisan dan gabungan pada elemen kabur hesitant bernilai interval memenuhi sifat-sifat aljabar yaitu sifat komutatif, sifat asosiatif, sifat distributif. Bentuk operator-operator pada himpunan kabur hesitant bernilai interval yaitu operator GIVHFWA, GIVHFWG dan operator GIVHFOWA, GIVHFOWG.Kata Kunci :himpunan kabur hesitant bernilai interval, sifat-sifat operasi, operator


2015 ◽  
Vol 24 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Jun Ye

AbstractOn the basis of the combination of single-valued neutrosophic sets and hesitant fuzzy sets, this article proposes a single-valued neutrosophic hesitant fuzzy set (SVNHFS) as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy set, single-valued neutrosophic set, hesitant fuzzy set, and dual hesitant fuzzy set. Then, we introduce the basic operational relations and cosine measure function of SVNHFSs. Also, we develop a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their properties. Furthermore, a multiple-attribute decision-making method is established on the basis of the SVNHFWA and SVNHFWG operators and the cosine measure under a single-valued neutrosophic hesitant fuzzy environment. Finally, an illustrative example of investment alternatives is given to demonstrate the application and effectiveness of the developed approach.


Sign in / Sign up

Export Citation Format

Share Document