The use of generalized Laguerre functions for solving the equation of magnetohydydinamic flow due to a stretching cylinder

SeMA Journal ◽  
2016 ◽  
Vol 73 (4) ◽  
pp. 335-346
Author(s):  
Mohammadreza Foroutan ◽  
Ali Ebadian ◽  
Shahram Najafzadeh
2020 ◽  
Vol 92 (3) ◽  
pp. 31101
Author(s):  
Zahoor Iqbal ◽  
Masood Khan ◽  
Awais Ahmed

In this study, an effort is made to model the thermal conduction and mass diffusion phenomena in perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D flow of magnetized Burgers nanofluid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also included to investigate the heat flow mechanism. Additionally, mass diffusion process in flow of nanofluid is examined by employing the influence of chemical reaction. Mathematical modelling of momentum, heat and mass diffusion equations is carried out in mathematical formulation section of the manuscript. Homotopy analysis method (HAM) in Wolfram Mathematica is utilized to analyze the effects of physical dimensionless constants on flow, temperature and solutal distributions of Burgers nanofluid. Graphical results are depicted and physically justified in results and discussion section. At the end of the manuscript the section of closing remarks is also included to highlight the main findings of this study. It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature curves of nanofluid. Additionally, depreciation is assessed in mass diffusion process due to escalating amount of thermophoretic force constant.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Pedro J. Miana ◽  
Natalia Romero

Generalized Laguerre polynomials, Ln(α), verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them.


2020 ◽  
Vol 25 (3) ◽  
pp. 49
Author(s):  
Silvia Licciardi ◽  
Rosa Maria Pidatella ◽  
Marcello Artioli ◽  
Giuseppe Dattoli

In this paper, we show that the use of methods of an operational nature, such as umbral calculus, allows achieving a double target: on one side, the study of the Voigt function, which plays a pivotal role in spectroscopic studies and in other applications, according to a new point of view, and on the other, the introduction of a Voigt transform and its possible use. Furthermore, by the same method, we point out that the Hermite and Laguerre functions, extension of the corresponding polynomials to negative and/or real indices, can be expressed through a definition in a straightforward and unified fashion. It is illustrated how the techniques that we are going to suggest provide an easy derivation of the relevant properties along with generalizations to higher order functions.


Automatica ◽  
2004 ◽  
Vol 40 (5) ◽  
pp. 815-822 ◽  
Author(s):  
Ricardo J.G.B. Campello ◽  
Gérard Favier ◽  
Wagner C. do Amaral

2015 ◽  
Vol 22 (2) ◽  
pp. 707-716 ◽  
Author(s):  
M. Ramzan ◽  
M. Farooq ◽  
T. Hayat ◽  
A. Alsaedi ◽  
J. Cao

Sign in / Sign up

Export Citation Format

Share Document