Numerical analysis of the effect of sweep-back angle on the stability derivatives of the grid fin

Author(s):  
Parisa Dehghani ◽  
Miralam Mahdi
1977 ◽  
Vol 14 (02) ◽  
pp. 265-275
Author(s):  
Carl A. Scragg

This paper presents a new method of experimentally determining the stability derivatives of a ship. Using a linearized set of the equations of motion which allows for the presence of a memory effect, the response of the ship to impulsive motions is examined. This new technique is compared with the traditional method of regular-motion tests and experimental results are presented for both methods.


1979 ◽  
Vol 30 (4) ◽  
pp. 559-589 ◽  
Author(s):  
M. Khalid ◽  
R.A. East

SummaryThis paper presents a semi-empirical theoretical model for calculating the effect of nose bluntness on the stability derivatives of oscillating slender cones at hypersonic Mach numbers. It is based on a hybrid blast wave analogy/shock-expansion flow model and is used to obtain closed form analytic expressions for the derivatives for oscillating slender cones. Two models based on zero thickness and finite thickness entropy layers are proposed which are seen to be appropriate to the cases of very small and large nose bluntnesses, respectively. The results are compared with new and existing experimental data and with the predictions of previous theoretical methods.


1992 ◽  
Vol 59 (4) ◽  
pp. 1000-1008 ◽  
Author(s):  
D. Seter ◽  
A. Rosen

A numerical model to investigate the stability of the vertical autorotation of a singlewinged samara is presented. This model is obtained after the method of small perturbations about an equilibrium state is applied on the nonlinear equations of motion of the samara. The aerodynamic stability derivatives of the wing are obtained by numerical differentiation. The model is used in order to study the influence of different parameters on the stability. Since the stability is highly dependent on the basic equilibrium state, the influence of the different parameters on the basic state is also presented and discussed. The theoretical model is validated by comparing its results with qualitative experimental results.


2016 ◽  
Vol 121 (1235) ◽  
pp. 1-20 ◽  
Author(s):  
K. Ferguson ◽  
D. Thomson

ABSTRACTSome helicopter manufacturers are exploring the compound helicopter design as it could potentially satisfy the new emerging requirements placed on the next generation of rotorcraft. It is well understood that the main benefit of the compound helicopter is its ability to reach speeds that significantly surpass the conventional helicopter. However, it is possible that the introduction of compounding may lead to a vehicle with significantly different flight characteristics when compared to a conventional helicopter. One method to examine the flight dynamics of an aircraft is to create a linearised mathematical model of the aircraft and to investigate the stability derivatives of the vehicle. The aim of this paper is to examine the stability derivatives of a compound helicopter through a comparison with a conventional helicopter. By taking this approach, some stability, handling qualities and design issues associated with the compound helicopter can be identified. The paper features a conventional helicopter and a compound helicopter. The conventional helicopter is a standard design, featuring a main rotor and a tail-rotor. The compound helicopter configuration features both lift and thrust compounding. The wing offloads the main rotor at high speeds, whereas two propellers provide additional propulsive thrust as well as yaw control. The results highlight that the bare airframe compound helicopter would require a larger tailplane surface to ensure acceptable longitudinal handling qualities in forward flight. In addition, without increasing the size of the bare airframe compound helicopter’s vertical fin, the Dutch roll mode satisfies the ADS-33 level 1 handling qualities category for the majority of the flight envelope.


1982 ◽  
Vol 1982 (152) ◽  
pp. 167-179
Author(s):  
Masataka Fujino ◽  
Keiichi Yamasaki ◽  
Yuji Ishii

Sign in / Sign up

Export Citation Format

Share Document