Numerical simulation of the ferro-nanofluid flow in a porous ribbed microchannel heat sink: investigation of the first and second laws of thermodynamics with single-phase and two-phase approaches

Author(s):  
Quyen Nguyen ◽  
Shahab Naghdi Sedeh ◽  
Davood Toghraie ◽  
Rasool Kalbasi ◽  
Arash Karimipour
2001 ◽  
Author(s):  
G. Hetsroni ◽  
A. Mosyak ◽  
Z. Segal

Abstract Experimental investigation of a heat sink for electronics cooling is performed. The objective is to keep the operating temperature at a relatively low level of about 323–333K, while reducing the undesired temperature variation in both the streamwise and transverse directions. The experimental study is based on systematic temperature, flow and pressure measurements, infrared radiometry and high-speed digital video imaging. The heat sink has parallel triangular microchannels with a base of 250μm. According to the objectives of the present study, Vertrel XF is chosen as the working fluid. Experiments on flow boiling of Vertrel XF in the microchannel heat sink are performed to study the effect of mass velocity and vapor quality on the heat transfer, as well as to compare the two-phase results to a single-phase water flow.


Author(s):  
Saad K. Oudah ◽  
Ruixian Fang ◽  
Amitav Tikadar ◽  
Karim Egab ◽  
Chen Li ◽  
...  

An experimental investigation was conducted on a single phase microchannel heat sink, in which the bottom surface of the microchannel was modified with hybrid micro-sandblasting of elliptical patterns (HSEP) and fully sandblasting (FS) to passively enhance the microchannel heat transfer performance. The dimension of the microchannel is measured as 26 mm (L) × 5mm (W) × 0.35 mm (H), which results in a hydraulic diameter of 654 μm. Deionized water was used as the coolant, and the Reynolds number range between 85 to 650 was tested. The experimental results show that fully sandblasting (FS) bottom surface of the microchannel only slightly improved the heat transfer performance. However, the modified surface with HSEP enhanced the heat transfer performance substantially, compared to the benchmark results obtained with the bare surface (BS) microchannel. The pressure drops of the HSEP increased slightly compared to the BS and FS, due to the flow resistance of the microstructures. The proposed surface for enhancement of heat transfer will be useful in many high heat flux engineering applications. In the future, this study will be further extended to two-phase microchannel heat transfer.


Author(s):  
Jinyuan Wang ◽  
Yi-Peng Xu ◽  
Raed Qahiti ◽  
M. Jafaryar ◽  
Mashhour A. Alazwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document