scholarly journals Trajectory Tracking Control of UR5 Robot Manipulator Using Fuzzy Gain Scheduling Terminal Sliding Mode Controller

2020 ◽  
Vol 4 (1) ◽  
pp. 113-135
Author(s):  
Andualem Welabo ◽  
Gebremichael Tesfamariamr
2019 ◽  
Vol 9 (13) ◽  
pp. 2625 ◽  
Author(s):  
Mengmeng Li ◽  
Qinglin Wang ◽  
Yuan Li ◽  
Zhaoguo Jiang

Dielectric electro-active polymer (DEAP) materials, also called artificial muscle, are a kind of EAP smart materials with extraordinary strains up to 30% at a high driving voltage. However, the asymmetric rate-dependent hysteresis is a barrier for trajectory tracking control of DEAP actuators. To overcome the barrier, in this paper, a Hammerstein model is established for the asymmetric rate-dependent hysteresis of a DEAP actuator first, in which a modified Prandtl-Ishlinskii (MPI) model is used to represent the static hysteresis nonlinear part, and an autoregressive with exogenous inputs (ARX) model is used to represent the linear dynamic part. Applying Levenberg-Marquardt (LM) algorithm identifies the parameters of the Hammerstein model. Then, based on the MPI model, an inverse hysteresis compensator is obtained to compensate the hysteresis behavior. Finally, a compound controller consisting of the hysteresis compensator and a novel discrete-time terminal sliding mode controller (DTSMC) without state observer is proposed to achieve the high-precision trajectory tracking control. Stability analysis of the closed-loop system is verified by using Lyapunov stability theorem. Experimental results based on a DEAP actuator show that the proposed controller has better tracking control performance compared with a conventional discrete-time sliding mode controller (DSMC).


2021 ◽  
Author(s):  
Danni Shi ◽  
Jinhui Zhang ◽  
Zhongqi Sun ◽  
Yuanqing Xia

Abstract In this paper, the problem of the composite trajectory tracking control for robot manipulator with lumped uncertainties including unmodeled dynamics and external disturbances is investigated. To achieve the active disturbance rejection, the adaptive sliding mode disturbance observer is proposed to estimate the unknown lumped uncertainties in the absence of the prior upper bound information on the lumped uncertainties. Then, by combining the non-singular terminal sliding mode control and prescribed performance control approaches, the composite trajectory tracking controller is designed, and not only the finite-time convergence of the trajectory tracking errors, but also the prescribed performances are guaranteed. Finally, by applying the proposed control scheme to a two-DOF manipulator system, the effectiveness and advantages are verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document