A comparative study of two inverse dynamic models of 6 degree-of-freedom rotary Stewart-Gough parallel robot

Author(s):  
Zafer Mahmoud ◽  
Mohammad Reza Arvan ◽  
Vahab Nekoukar ◽  
Mohammad Rezaei
2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986176 ◽  
Author(s):  
Fida Ben Abdallah ◽  
Naoufel Azouz ◽  
Lotfi Beji ◽  
Azgal Abichou

In this article, we present a preliminary analysis of a heavy-lift airship carrying a payload through a cable-driven parallel robot. With unlimited access to isolated locations around the globe, heavy-lift airship enables affordable and safe delivery of heavy cargo thanks to its vertical takeoff and landing capabilities. By considering the airship and the cable-driven parallel robot as a combined system, the kinematic and dynamic models are developed. The choice of the proposed decentralized control structure is justified by the weak coupling of the two subsystems (i.e. airship and cable-driven parallel robot) which makes it possible to control the above two subsystems independently. A robust sliding mode control, capable of auto-piloting and controlling the airship, is developed. Furthermore, an inverse dynamic controller is applied to the cable-driven parallel robot in order to ensure loading and unloading phase. The feature of the proposed control system is that the coupled dynamics between the airship and the cable-driven parallel robot are explicitly incorporated into control system design, without any simplifying assumption. Numerical simulation results are presented and a stability analysis is provided to confirm the accuracy of our derivations.


Author(s):  
Martin Hosek ◽  
Michael Valasek ◽  
Jairo Moura

This paper presents single- and dual-end-effector configurations of a planar three-degree of freedom parallel robot arm designed for automated pick-place operations in vacuum cluster tools for semiconductor and flat-panel-display manufacturing applications. The basic single end-effector configuration of the arm consists of a pivoting base platform, two elbow platforms and a wrist platform, which are connected through two symmetric pairs of parallelogram mechanisms. The wrist platform carries an end-effector, the position and angular orientation of which can be controlled independently by three motors located at the base of the robot. The joints and links of the mechanism are arranged in a unique geometric configuration which provides a sufficient range of motion for typical vacuum cluster tools. The geometric properties of the mechanism are further optimized for a given motion path of the robot. In addition to the basic symmetric single end-effector configuration, an asymmetric costeffective version of the mechanism is derived, and two dual-end-effector alternatives for improved throughput performance are described. In contrast to prior attempts to control angular orientation of the end-effector(s) of the conventional arms employed currently in vacuum cluster tools, all of the motors that drive the arm can be located at the stationary base of the robot with no need for joint actuators carried by the arm or complicated belt arrangements running through the arm. As a result, the motors do not contribute to the mass and inertia properties of the moving parts of the arm, no power and signal wires through the arm are necessary, the reliability and maintenance aspects of operation are improved, and the level of undesirable particle generation is reduced. This is particularly beneficial for high-throughput applications in vacuum and particlesensitive environments.


Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


Author(s):  
Hermes Giberti ◽  
Davide Ferrari

In this work, it is considered a 6-DoF robotic device intended to be applied for hardware-in-the-loop (HIL) motion simulation with wind tunnel models. The requirements have led to a 6-PUS parallel robot whose linkages consist of six closed-loop kinematic chains, connecting the fixed base to the mobile platform with the same sequence of joints: actuated Prism (P), Universal (U), and Spherical (S). As is common for parallel kinematic manipulators (PKMs), the actual performances of the robot depend greatly on its dimensions. Therefore, a kinematic synthesis has been performed and several Pareto-optimal solutions have been obtained through a multi-objective optimization of the machine geometric parameters, using a genetic algorithm. In this paper, the inverse dynamic analysis of the robot is presented. Then, the results are used for the mechanical sizing of the drive system, comparing belt- to screw-driven units and selecting the motor-reducer groups. Finally, the best compromise Pareto-optimal solution is definitely chosen.


Sign in / Sign up

Export Citation Format

Share Document