scholarly journals Accelerating privacy-preserving momentum federated learning for industrial cyber-physical systems

Author(s):  
Linlin Zhang ◽  
Zehui Zhang ◽  
Cong Guan

AbstractFederated learning (FL) is a distributed learning approach, which allows the distributed computing nodes to collaboratively develop a global model while keeping their data locally. However, the issues of privacy-preserving and performance improvement hinder the applications of the FL in the industrial cyber-physical systems (ICPSs). In this work, we propose a privacy-preserving momentum FL approach, named PMFL, which uses the momentum term to accelerate the model convergence rate during the training process. Furthermore, a fully homomorphic encryption scheme CKKS is adopted to encrypt the gradient parameters of the industrial agents’ models for preserving their local privacy information. In particular, the cloud server calculates the global encrypted momentum term by utilizing the encrypted gradients based on the momentum gradient descent optimization algorithm (MGD). The performance of the proposed PMFL is evaluated on two common deep learning datasets, i.e., MNIST and Fashion-MNIST. Theoretical analysis and experiment results confirm that the proposed approach can improve the convergence rate while preserving the privacy information of the industrial agents.

Author(s):  
Salman Shamshad ◽  
Khalid Mahmood ◽  
Shafiq Hussain ◽  
Sahil Garg Ashok Kumar Das ◽  
Neeraj Kumar Joel J. P. C. Rodrigues

Author(s):  
Wilson Abel Alberto Torres ◽  
Nandita Bhattacharjee ◽  
Bala Srinivasan

Author(s):  
Ahmed El-Yahyaoui ◽  
Mohamed Daifr Ech-Cherif El Kettani

Fully homomorphic encryption schemes (FHE) are a type of encryption algorithm dedicated to data security in cloud computing. It allows for performing computations over ciphertext. In addition to this characteristic, a verifiable FHE scheme has the capacity to allow an end user to verify the correctness of the computations done by a cloud server on his encrypted data. Since FHE schemes are known to be greedy in term of processing consumption and slow in terms of runtime execution, it is very useful to look for improvement techniques and tools to improve FHE performance. Parallelizing computations is among the best tools one can use for FHE improvement. Batching is a kind of parallelization of computations when applied to an FHE scheme, it gives it the capacity of encrypting and homomorphically processing a vector of plaintexts as a single ciphertext. This is used in the context of cloud computing to perform a known function on several ciphertexts for multiple clients at the same time. The advantage here is in optimizing resources on the cloud side and improving the quality of services provided by the cloud computing. In this article, the authors will present a detailed survey of different FHE improvement techniques in the literature and apply the batching technique to a promising verifiable FHE (VFHE) recently presented by the authors at the WINCOM17 conference.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5463 ◽  
Author(s):  
Po-Wen Chi ◽  
Ming-Hung Wang

Cloud-assisted cyber–physical systems (CCPSs) integrate the physical space with cloud computing. To do so, sensors on the field collect real-life data and forward it to clouds for further data analysis and decision-making. Since multiple services may be accessed at the same time, sensor data should be forwarded to different cloud service providers (CSPs). In this scenario, attribute-based encryption (ABE) is an appropriate technique for securing data communication between sensors and clouds. Each cloud has its own attributes and a broker can determine which cloud is authorized to access data by the requirements set at the time of encryption. In this paper, we propose a privacy-preserving broker-ABE scheme for multiple CCPSs (MCCPS). The ABE separates the policy embedding job from the ABE task. To ease the computational burden of the sensors, this scheme leaves the policy embedding task to the broker, which is generally more powerful than the sensors. Moreover, the proposed scheme provides a way for CSPs to protect data privacy from outside coercion.


Sign in / Sign up

Export Citation Format

Share Document