scholarly journals Privacy-Preserving Broker-ABE Scheme for Multiple Cloud-Assisted Cyber Physical Systems

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5463 ◽  
Author(s):  
Po-Wen Chi ◽  
Ming-Hung Wang

Cloud-assisted cyber–physical systems (CCPSs) integrate the physical space with cloud computing. To do so, sensors on the field collect real-life data and forward it to clouds for further data analysis and decision-making. Since multiple services may be accessed at the same time, sensor data should be forwarded to different cloud service providers (CSPs). In this scenario, attribute-based encryption (ABE) is an appropriate technique for securing data communication between sensors and clouds. Each cloud has its own attributes and a broker can determine which cloud is authorized to access data by the requirements set at the time of encryption. In this paper, we propose a privacy-preserving broker-ABE scheme for multiple CCPSs (MCCPS). The ABE separates the policy embedding job from the ABE task. To ease the computational burden of the sensors, this scheme leaves the policy embedding task to the broker, which is generally more powerful than the sensors. Moreover, the proposed scheme provides a way for CSPs to protect data privacy from outside coercion.

Author(s):  
Haoyang Wang ◽  
Kai Fan ◽  
Kuan Zhang ◽  
Zilong Wang ◽  
Hui Li ◽  
...  

Author(s):  
Salman Shamshad ◽  
Khalid Mahmood ◽  
Shafiq Hussain ◽  
Sahil Garg Ashok Kumar Das ◽  
Neeraj Kumar Joel J. P. C. Rodrigues

Author(s):  
Gilbert Regan ◽  
Fergal Mc Caffery ◽  
Pangkaj Chandra Paul ◽  
Jan Reich ◽  
Ioannis Sorokos ◽  
...  

Author(s):  
Linlin Zhang ◽  
Zehui Zhang ◽  
Cong Guan

AbstractFederated learning (FL) is a distributed learning approach, which allows the distributed computing nodes to collaboratively develop a global model while keeping their data locally. However, the issues of privacy-preserving and performance improvement hinder the applications of the FL in the industrial cyber-physical systems (ICPSs). In this work, we propose a privacy-preserving momentum FL approach, named PMFL, which uses the momentum term to accelerate the model convergence rate during the training process. Furthermore, a fully homomorphic encryption scheme CKKS is adopted to encrypt the gradient parameters of the industrial agents’ models for preserving their local privacy information. In particular, the cloud server calculates the global encrypted momentum term by utilizing the encrypted gradients based on the momentum gradient descent optimization algorithm (MGD). The performance of the proposed PMFL is evaluated on two common deep learning datasets, i.e., MNIST and Fashion-MNIST. Theoretical analysis and experiment results confirm that the proposed approach can improve the convergence rate while preserving the privacy information of the industrial agents.


Author(s):  
Vijey Thayananthan ◽  
Javad Yazdani

The main aim of this strategic research proposal is to develop a model of secure transportation system using efficient CPS which not only reduce the unnecessary accident rates but also increase safety system that enhances the livability of smart cities and Industry 4.0. Although the main focus is efficient security solutions, dynamic and intelligent approaches of the future security solutions will be able to detect the evolving threats and cyberattacks during the data or signal transmission between the users and service providers.


2016 ◽  
Vol 13 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Peter Herrmann ◽  
Jan Olaf Blech ◽  
Fenglin Han ◽  
Heinz Schmidt

A method preserving cyber-physical systems to operate safely in a joint physical space is presented. It comprises the model-based development of the control software and simulators for the continuous physical environment as well as proving the models for spatial and real-time properties. The corresponding toolchain is based on the model-based engineering tool Reactive Blocks and the spatial model checker BeSpaceD. The real-time constraints to be kept by the controller are proven using the model checker UPPAAL.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 47
Author(s):  
Alexander Vodyaho ◽  
Saddam Abbas ◽  
Nataly Zhukova ◽  
Michael Chervoncev

The distinctive feature of new generation information systems is not only their complexity in terms of number of elements, number of connections and hierarchy levels, but also their constantly changing structure and behavior. In this situation the problem of receiving actual information about the observed complex Cyber–Physical Systems (CPS) current status becomes a rather difficult task. This information is needed by stakeholders for solving tasks concerning keeping the system operational, improving its efficiency, ensuring security, etc. Known approaches to solving the problem of the complex distributed CPS actual status definition are not enough effective. The authors propose a model based approach to solving the task of monitoring the status of complex CPS. There are a number of known model based approaches to complex distributed CPS monitoring, but their main difference in comparison with the suggested one is that known approaches by the most part use static models which are to be build manually by experts. It takes a lot of human efforts and often results in errors. Our idea is that automata models of structure and behavior of the observed system are used and both of these models are built and kept in actual state in automatic mode on the basis of log file information. The proposed approach is based, on one hand, on the results of the authors researches in the field of automatic synthesis of multi-level automata models of observed systems and, on the other hand, on well known algorithms of process mining. In the paper typical monitoring tasks are described and generalized algorithms for solving them using the proposed system of models are presented. An example of real life systems based on the suggested approach is given. The approach can be recommended to use for building CPS of medium and high complexity, characterized by high structural dynamics and cognitive behavior.


2019 ◽  
Vol 11 (10) ◽  
pp. 211
Author(s):  
Juhani Latvakoski ◽  
Jouni Heikkinen

The motivation for this research arises from the challenges in the trustworthy communications related operation of cyber-physical systems (CPS), especially in the energy and mobility domains. The increasing amount of distributed energy resources (DERs) of prosumers and electric vehicles requires new ways for CPS communications to enable information exchanges for smart operation in peak consumption hours and balancing power levels in the energy grids in order to lower the energy cost. The huge number of mobile appliances and the related service providers do not serve properly the privacy of the owners, owing to the vertical silo type of operating model in industries. As the results of this research, we provide a trustworthy communication hub for CPS (CPS hub) for solving the challenges related to trustworthy communications between physical resources owned by different stakeholders. The CPS hub realizes the communication spaces concept, and enables combined trust and communications processes when dynamic resources owned by different stakeholders are exchanging information. The evaluations showed that the provided CPS hub enable information exchanges between distributed energy resources of different stakeholders, so that they can join the aggregation process for more flexible and efficient resource usage in energy markets. The CPS hub enable interaction between heterogeneous physical devices of multiple stakeholders to exchange information so that, for example, authorities can see the situation in the emergency area and, simultaneously, the policies of the owners can be taken into concern. Despite limited evaluation scenarios, it is shown that consideration of the ownership issues in the trustworthy communication for information exchanges between heterogeneous physical resources (devices) is possible and feasible. Several future research items, such as, for example, scalability; real-time and streams based operation; as well as consideration of the security, privacy, trust, and safety challenges, were detected. However, the evaluations showed that the constructed CPS hub contribute a set of very essential technical enablers for future smart CPS systems and create strong a basis for such future research towards a future smart society.


Sign in / Sign up

Export Citation Format

Share Document