scholarly journals Coal petrology analysis and implications in depositional environments from upper Cretaceous to Miocene: a study case in the Eastern Cordillera of Colombia

Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.

2020 ◽  
Author(s):  
Clara Guatame ◽  
Marco Rincón

Abstract The Piedemonte Llanero basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque Formation, Palmichal Group, Arcillas del Limbo Formation, and San Fernando Formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque Formation) to subbituminous C (San Fernando Formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite.Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene- Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque Formation evolving to the lacustrine conditions in the San Fernando Formation.


2020 ◽  
Author(s):  
Clara Guatame ◽  
Marco Rincón

Abstract Coal petrological characteristics along the Piedemonte Llanero and the reconstruction of the deposit environment were obtained from macerals and micro-lithotypes analysis since these data provide information about the processes and prevalent conditions during the peat formation. We analyzed seams from Cenomanian to Miocene geological units (Chipaque Formation, Palmichal Group, Arcillas del Limbo Formation, and San Fernando Formation). Coal range decreases gradually from high-volatile C bituminous (HVCB) in the Chipaque Formation to sub-bituminous C in the San Fernando Formation. The coals are enriched in macerals of vitrinite, whereas the liptinite and inertinite concentrations vary according to the stratigraphic position. The micro-lithotypes are bi-maceral and tri-macerals, being the highest concentrations of clarite and vitrinertoliptite. The results of the facies analysis show that the peat in which the coals developed is mainly of arboreal and herbaceous affinity (rich in lignin and cellulose). Peats are ombrotrophic (rainfed) to mesotrophic (transitional or mixed mires) with variations in the flooding surface and influxes of brackish water. Good tissue preservation is inferred from the wet conditions in forest swamps with few humification and gelation. According to the micro-lithotypes composition, the peat environment was deduced as estuarine system, evolving to lacustrine environment of the deltaic system, both restricted by changes in sea level, which are evidenced by oxic and anoxic periods in the analyzed sequence.


2011 ◽  
Vol 182 (6) ◽  
pp. 479-491 ◽  
Author(s):  
Pierre Maurizot

Abstract New Caledonia lies at the northern tip of the Norfolk ridge, a continental fragment separated from the east Gondwana margin during the Late Cretaceous. Stratigraphic data for constraining the convergence that led to ophiolitic nappes being obducted over Grande Terre during the Eocene are both few and inaccurate. To try and fill this gap and determine the onset of the convergence, we investigated the lithology, sedimentology, biostratigraphy and geodynamic context of the Late Cretaceous – Palaeogene sedimentary cover-rock succession of northern New Caledonia. We were able to establish new stratigraphic correlations between the sedimentary units, which display large southwest-verging overfolds detached along a basal argillite series, and reinterpret their interrelationships. The sediments from the Cretaceous-Paleocene interval were deposited in a post-rift pelagic environment and are mainly biogenic with minimal terrigenous input. From the base up, they comprise black organic-rich sulphide-bearing argillite, black chert (silicified equivalent of the argillite), micritic with chert, and micrite rich in planktonic foraminifera. These passive-margin deposits are found regionally on the Norfolk Ridge down to New Zealand, and on the Lord Howe Rise, and were controlled primarily by regional or global environmental factors. The overlying Eocene deposits mark a change to an active-margin regime with distal calciturbidite and proximal breccia representing the earliest Paleogene flysch-type deposits in New Caledonia. The change from an extensional to a compressive regime marks the beginning of the pre-obduction convergence and can be assigned fairly accurately in the Koumac–Gomen area to the end of the Early Eocene (Late Ypresian, Biozone E7) at c 50 Ma. From this period on, the post-Late Cretaceous cover in northern New Caledonia was caught up and recycled in a southwest-verging accretionary complex ahead of which flysch was deposited in a flexural foreland basin. The system prograded southwards until the Late Eocene collisional stage, when the continental Norfolk ridge entered the convergence zone and blocked it. At this point the autochthonous and parautochthonous sedimentary cover and overlying flysch of northern New Caledonia was thrust over the younger flysch to the south to form a newly defined allochthonous unit, the ‘Montagnes Blanches’ nappe, that is systematically intercalated between the flysch and the obducted ophiolite units throughout Grande Terre.


2021 ◽  
Author(s):  
Bernardo Jose Franco ◽  
Maria Agustina Celentano ◽  
Desdemona Magdalena Popa

Abstract Objectives/Scope Aptian (Shuaiba-Bab) and Cenomanian (Mishrif-Shilaif) intra-shelf basins were extensively studied with their genesis focused on environmental/climatic disturbances (Vahrenkamp et al., 2015a). Additionally, local tectonic events can also affect the physiography of these basins, especially the Cenomanian intra-shelf basin subjected to NE compressional regime. As this ongoing regime increased at Late-Cretaceous and Miocene, it led to more tectonic-driven basin physiography. This paper investigates the areal extent, interaction, and commonalities between the extensional Aptian intra-shelf basin, compressional Late-Cretaceous intra-shelf basin, Late-Cretaceous-Paleogene foreland basin, and Late Oligocene-Miocene salt basin. Methods, Procedures, Process To understand the genesis, driving forces, and distribution of these basins, we used a combination of several large-scale stratigraphic well correlations and seismic, together with age dating, cores, and extensive well information (ADNOC proprietary internal reports). The methodology used this data for detailed mapping of 11 relevant time stratigraphic intervals, placing the mapped architecture in the context of the global eustatic sea level and major geodynamic events of the Arabian Plate. Results, Observations, Conclusions Aptian basin took place as a consequence of environmental/climatic disturbances (Vahrenkamp et al., 2015a). However, environmental factors alone cannot explain isolated carbonate build-ups on salt-related structures at the intra-shelf basin, offshore Abu Dhabi. Subsequently, the emplacement of thrust sheets of Tethyan rocks from NE, and following ophiolite obduction (Searle et al., 1990; Searle, 2007; Searle and Ali, 2009; Searle et al., 2014), established a compressional regime in the Albian?-Cenomanian. This induced tectonic features such as: loading-erosion on eastern Abu Dhabi, isolated carbonate build-ups, and reactivation of a N-S deep-rooted fault (possibly a continuation of Precambrian Amad basement ridge from KSA). This N-S feature was probably the main factor contributing the basin axis change from E-W Aptian trend to N-S position at Cenomanian. Further compression continued into the Coniacian-Santonian, leading to a nascent foreland basin. This compression established a foredeep in eastern Abu Dhabi, separated by a bulge from the northern extension of the eastern Rub’ Al-Khali basin (Ghurab syncline) (Patton and O'Connor, 1988). Numerous paleostructures were developed onshore Abu Dhabi, together with several small patch-reefs on offshore salt growing structures. Campanian exhibits maximum structuration associated to eastern transpression related to Masirah ophiolite obduction during India drift (Johnson et al., 2005, Filbrandt et al., 2006; Gaina et al., 2015). This caused more differentiation of the foredeep, onshore synclines, and northern paleostructures, which continued to cease through Maastrichtian. From Paleocene to Late-Eocene, paleostructure growth intensity continued decreasing and foreland basin hydrological restriction began with the Neotethys closure. Through Oligocene until Burdigalian this situation continued, where the Neotethys closed with the Zagros Orogeny (Sharland et al., 2001), causing a new environmental/climatic disturbances period. These disturbances prevented the continued progradation of the carbonate factory into the foredeep, leading to conspicuous platform-basin differentiation. Additionally, the Zagros orogeny tilted the plate northeastward, dismantling the paleostructures generated at Late-Cenomanian. Finally, during an arid climate in the Burdigalian to Middle-Miocene, the confined Neogene sea filled the foredeep accommodation space with massive evaporites. Novel/Additive Information Little has been published about the outline and architecture of these basins in Abu Dhabi and the detailed circumstances that led to their genesis using subsurface information.


1973 ◽  
Vol 10 (3) ◽  
pp. 331-365 ◽  
Author(s):  
J. A. Jeletzky

Conflicting interpretations of age and depositional environment of the Tertiary rocks of Nootka Island and adjacent areas of Vancouver Island resulting from studies of their molluskan and foraminiferal faunas appear to be caused by:1. A conflict of opinion concerning the correlation of regional molluskan, foraminiferal, and mammalian stages now applied to the Tertiary rocks of Western North America with units of the international biochronological standard based on the European faunas and type sections.2. Underestimation of the regional (i.e. within individual regions of the Western North American Tertiary province) biochronological value of Tertiary mollusks and other invertebrate macrofossils by many foraminiferal specialists.3. Neglect of mollusks as paleoecological indices by some foraminiferal specialists.4. Misinterpretation of paleoecological value of fossil foraminifers by some foraminiferal specialists. The application of general considerations 1 to 4 to the Tertiary rocks of Nootka Island and adjacent areas of Vancouver Island indicates that:1. A micropaleontological interpretation of the whole of Divisions A and B as bathyal deposits formed at depths of about 2000 ft (610 m) is unwarranted. The molluskan fauna present in the greater part of these units indicates they are predominantly littoral to outer neritic (0 to 800 ft (0 to 244 m)) deposits. Only the middle part of Division B could have been a bathyal (i.e. more than 800 ft (244 m) deep) deposit.A turbiditic redeposition of coarse clastics of Division A into the bathyal depth is ruled out by the state of preservation of its macrofossils, lithology of rocks, and the abundance of regular rows of early diagenetic concretions which maintain their stratigraphic position over considerable distances. The shales of Division B are not redeposited turbidites for the same reasons. If the abundance of allegedly bathyal foraminifers throughout the thickness of these two units will be confirmed by proper documentation and by further research it would be necessary to interpret their association with neritic macro-invertebrates as having been caused by the influence of strong upwelling currents which lowered the temperature of inshore waters and so made them habitable for these foraminifers.2. The recently proposed late Eocene dating of the upper part of Division A and the lower and middle parts of Division B cannot be justified either by the molluskan or by the foraminiferal fauna. The previously proposed early to mid-Oligocene age of these units remains valid regardless of whether one places them into the late Refugian foraminiferal stage or in the Lincoln molluskan stage.3. Even if it is valid, the unsupported claim of the presence of Bulimina schencki fauna does not indicate the correlation of these beds with the late Narizian, as this fauna is closely allied to and is probably contemporary with the early Refugian faunas of southern California. However, these beds may be of a latest Eocene age if the presence of Bulimina schencki fauna will be confirmed.4. The upper part of Division B contains an apparently Lower Blakeley macrofauna suggestive of late Oligocene age in terms of the generally accepted molluskan chronology. The early to mid-Zemorrian (=mid-Oligocene) dating of its foraminifer fauna reflects the divergent micropaleontological tradition which favors the placement of the Oligocene/Miocene boundary at the top of the Zemorrian stage.5. The suggested late Miocene to early Pliocene age of a shallow water foraminifer fauna of Division C of Nootka Island is contradicted by its stratigraphic position underneath the reliably dated Division D (see below). Only the upper part of Division C appears to be a neritic to ?littoral deposit. Its lower part is more likely an outermost neritic to uppermost bathyal deposit.6. The rich and diagnostic upper Blakeley (=lower Miocene) molluskan fauna of Division D is indubitably correlative with that of the type Sooke Formation of Southeastern Vancouver Island and with that of the "Sooke" Formation of the Seattle area. The early Miocene age of these three units is confirmed by the presence of a primitive whale tentatively referred to the order of Archaeoceti and the desmostylan genus Cornwallius in the type Sooke Formation. These data discredit the recently proposed early to early middle Pliocene dating of foraminifers of the Division D and the type Sooke Formation.7. No post-lower Miocene rocks are known to outcrop anywhere on the western coast of Vancouver Island contrary to the recent claims of some micropaleontologists. Also, there is no evidence of an unconformity separating the lower Miocene Division D from the underlying Oligocene to ?lowest Miocene Divisions A, B, and C. All four units appear to form part of a single invasion of a shelf-like (predominantly outer neritic to uppermost bathyal) Oligocene – early Miocene sea onto the southwestern part of Nootka Island. This sea, which may have been deeper and represented by a different facies elsewhere (i.e. Hesquiat Peninsula, Pachena–Sooke area), apparently withdrew completely and permanently from the west coast of Vancouver Island in the latest early Miocene.


2020 ◽  
Vol 51 (1) ◽  
pp. 53-91 ◽  
Author(s):  
P. Maurizot ◽  
A. Bordenave ◽  
D. Cluzel ◽  
J. Collot ◽  
S. Etienne

AbstractIn New Caledonia, the cover refers to the autochthonous Late Cretaceous to Paleogene sedimentary and volcanic formations unconformably overlying the basement rocks and underlying the allochthonous nappes. The first period of deposition, broadly from the Late Cretaceous to Paleocene (c. 105–56 Ma) was controlled by extension and rifting. The second period, broadly the Eocene (c. 56–34 Ma), was dominated by convergence and contraction. The Late Cretaceous part of the cover consists of synrift conglomerates and coal-bearing deposits with interlayered bimodal, subduction-related and intra-plate volcanic rocks. The post-rift deposits are deep water sedimentary rocks deposited under anoxic conditions with reduced terrigenous input. The Paleocene to Eocene formations, mainly carbonates, attest to profound palaeogeographical changes and a switch to a different geodynamic regime, linked to the onset of Eocene convergence. The Middle to Late Eocene formations are typically composed of turbidites and breccias. They were deposited in a typical flexural foreland basin context as an upwards-coarsening sequence topped by an olistostrome. They are associated with tectonic convergence and east-dipping subduction that led to the end-Eocene obduction of ophiolitic nappes. This two-fold evolution, extension then compression, can be integrated in the wider framework of the plate tectonic evolution of the SW Pacific.


Palaeobotany ◽  
2014 ◽  
Vol 5 ◽  
pp. 73-93 ◽  
Author(s):  
L. B. Golovneva ◽  
S. V. Shczepetov

The Gedan floristic assemblage occurs from upper layers of the Kholchan Formation of the Okchotsk-Chukotka volcanogenic belt (OCVB). The locality is situated at the Gedan River in the middle part of the Arman River basin. The Gedan assemblage is composed of 6 taxa: Cladophlebis sp., Sphenobaiera sp., Ginkgo ex gr. adiantoides (Ung.) Heer, Taxodium amguemensis (Efimova) Golovn., Metasequoia sp., Pagiophyllum sp. The similarity of the Gedan floristic assemblage with the Karamken and the Khirumki floristic assemblages from the Kholchan Formation of the Okhotsk sector of the OCVB allows us to join them in the Kholchan flora. This flora is distinct from more ancient Arman flora, which dated as the Turonian-Coniacian and from younger Ola flora, which dated as the Santonian-early Campanian. The age of the Kholchan flora is estimated as the Coniacian on the basis of stratigraphic position, presence of Podozamites, Metasequoia and Quereuxia and also isotopic data. This flora is equivalent with the Chaun flora of Central Chukotka, with the Aleeki flora from the Villigha and Toomahni Rivers interfluve and with the Ulya flora from the southern part of the Okhotsk-Chukotka volcanogenic belt.


2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


Sign in / Sign up

Export Citation Format

Share Document