Probabilistic Linguistic Z Number Decision-Making Method for Multiple Attribute Group Decision-Making Problems with Heterogeneous Relationships and Incomplete Probability Information

Author(s):  
Fei Teng ◽  
Lei Wang ◽  
Lili Rong ◽  
Peide Liu
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sen Liu ◽  
Zhilan Song ◽  
Shuqi Zhong

Urban public transportation hubs are the key nodes of the public transportation system. The location of such hubs is a combinatorial problem. Many factors can affect the decision-making of location, including both quantitative and qualitative factors; however, most current research focuses solely on either the quantitative or the qualitative factors. Little has been done to combine these two approaches. To fulfill this gap in the research, this paper proposes a novel approach to the public transportation hub location problem, which takes both quantitative and qualitative factors into account. In this paper, an improved multiple attribute group decision-making (MAGDM) method based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and deviation is proposed to convert the qualitative factors of each hub into quantitative evaluation values. A location model with stochastic passenger flows is then established based on the above evaluation values. Finally, stochastic programming theory is applied to solve the model and to determine the location result. A numerical study shows that this approach is applicable and effective.


2021 ◽  
pp. 1-11
Author(s):  
Huiyuan Zhang ◽  
Guiwu Wei ◽  
Xudong Chen

The green supplier selection is one of the popular multiple attribute group decision making (MAGDM) problems. The spherical fuzzy sets (SFSs) can fully express the complexity and fuzziness of evaluation information for green supplier selection. Furthermore, the classic MABAC (multi-attributive border approximation area comparison) method based on the cumulative prospect theory (CPT-MABAC) is designed, which is an optional method in reflecting the psychological perceptions of decision makers (DMs). Therefore, in this article, we propose a spherical fuzzy CPT-MABAC (SF-CPT-MABAC) method for MAGDM issues. Meanwhile, considering the different preferences of DMs to attribute sets, we obtain the objective weights of attributes through entropy method. Focusing on the current popular problems, this paper applies the proposed method for green supplier selection and proves for green supplier selection based on SF-CPT-MABAC method. Finally, by comparing existing methods, the effectiveness of the proposed method is certified.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 658 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Florentin Smarandache ◽  
Madad Khan ◽  
Nasruddin Hassan

In this paper, triangular cubic hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy Einstein hybrid weighted averaging (TCHFEHWA) operator are proposed. An approach to multiple attribute group decision making with linguistic information is developed based on the TCHFEWA and the TCHFEHWA operators. Furthermore, we establish various properties of these operators and derive the relationship between the proposed operators and the existing aggregation operators. Finally, a numerical example is provided to demonstrate the application of the established approach.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 486 ◽  
Author(s):  
Jie Wang ◽  
Guiwu Wei ◽  
Mao Lu

In this article, we extend the original TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making) method to the 2-tuple linguistic neutrosophic fuzzy environment to propose the 2TLNNs TODIM method. In the extended method, we use 2-tuple linguistic neutrosophic numbers (2TLNNs) to present the criteria values in multiple attribute group decision making (MAGDM) problems. Firstly, we briefly introduce the definition, operational laws, some aggregation operators and the distance calculating method of 2TLNNs. Then, the calculation steps of the original TODIM model are presented in simplified form. Thereafter, we extend the original TODIM model to the 2TLNNs environment to build the 2TLNNs TODIM model, our proposed method, which is more reasonable and scientific in considering the subjectivity of DM’s behaviors and the dominance of each alternative over others. Finally, a numerical example for the safety assessment of a construction project is proposed to illustrate the new method, and some comparisons are also conducted to further illustrate the advantages of the new method.


Sign in / Sign up

Export Citation Format

Share Document