scholarly journals Shape-Preserving Rational Interpolation Scheme for Regular Surface Data

2015 ◽  
Vol 2 (4) ◽  
pp. 713-747
Author(s):  
Maria Hussain ◽  
Malik Zawwar Hussain ◽  
Muhammad Sarfraz
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xinru Liu ◽  
Yuanpeng Zhu ◽  
Shengjun Liu

A biquartic rational interpolation spline surface over rectangular domain is constructed in this paper, which includes the classical bicubic Coons surface as a special case. Sufficient conditions for generating shape preserving interpolation splines for positive or monotonic surface data are deduced. The given numeric experiments show our method can deal with surface construction from positive or monotonic data effectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ayser Nasir Hassan Tahat ◽  
Abd Rahni Mt Piah ◽  
Zainor Ridzuan Yahya

A smooth curve interpolation scheme for positive, monotone, and convex data is developed. This scheme uses rational cubic Ball representation with four shape parameters in its description. Conditions of two shape parameters are derived in such a way that they preserve the shape of the data, whereas the other two parameters remain free to enable the user to modify the shape of the curve. The degree of smoothness isC1. The outputs from a number of numerical experiments are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Ruifeng Wu ◽  
Huilai Li ◽  
Tieru Wu

By using the polynomial expansion in the even order Bernoulli polynomials and using the linear combinations of the shifts of the functionf(x)(x∈ℝ)to approximate the derivatives off(x), we propose a family of modified even order Bernoulli-type multiquadric quasi-interpolants which do not require the derivatives of the function approximated at each node and can satisfy any degree polynomial reproduction property. Error estimate indicates that our operators could provide the desired precision by choosing a suitable shape-preserving parametercand a nonnegative integerm. Numerical comparisons show that this technique provides a higher degree of accuracy. Finally, applying our operators to the fitting of discrete solutions of initial value problems, we find that our method has smaller errors than the Runge-Kutta method of order 4 and Wang et al.’s quasi-interpolation scheme.


2010 ◽  
Vol 47 (6) ◽  
pp. 4073-4097 ◽  
Author(s):  
Qiqi Wang ◽  
Parviz Moin ◽  
Gianluca Iaccarino

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Le Zou ◽  
Shuo Tang

General interpolation formulae for bivariate interpolation are established by introducing multiple parameters, which are extensions and improvements of those studied by Tan and Fang. The general interpolation formulae include general interpolation formulae of symmetric branched continued fraction, general interpolation formulae of univariate and bivariate interpolation, univariate block based blending rational interpolation, bivariate block based blending rational interpolation and their dual schemes, and some interpolation form studied by many scholars in recent years. We discuss the interpolation theorem, algorithms, dual interpolation, and special cases and give many kinds of interpolation scheme. Numerical examples are given to show the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document