Heat and Mass Transfer Assessment of Magnetic Hybrid Nanofluid Flow via Bidirectional Porous Surface with Volumetric Heat Generation

Author(s):  
Navneet Joshi ◽  
Himanshu Upreti ◽  
Alok Kumar Pandey ◽  
Manoj Kumar
2020 ◽  
Vol 11 (4) ◽  
pp. 1275-1294
Author(s):  
Mohamad Hidayad Ahmad Kamal ◽  
Anati Ali ◽  
Sharidan Shafie ◽  
Noraihan Afiqah Rawi ◽  
Mohd Rijal Ilias

2021 ◽  
Vol 11 (23) ◽  
pp. 11203
Author(s):  
Shafiq Ahmad ◽  
Muhammad Naveed Khan ◽  
Aysha Rehman ◽  
Bassem F. Felemban ◽  
Maram S. Alqurashi ◽  
...  

The main purpose of this research is to scrutinize the heat and mass transfer in the Casson hybrid nanofluid flow over an extending cylinder in the presence of a magnetic dipole and double stratification. The nanofluid contained chemically reactive hybrid nanoparticles (Ag, MgO) in the conventional fluids (water). The effects of viscous dissipation, radiation, and concentration stratification were taken into consideration. In the presence of gyrotactic microorganisms and the Non-Ficks Model, the flow was induced. Incorporating microorganisms into a hybrid nanofluid flow is thought to help stabilize the dispersed nanoparticles. For viscosity and thermal conductivity, experimental relations with related dependence on nanoparticle concentration were used. To acquire the nonlinear model from the boundary layer set of equations, suitable similarity transformations were employed. The built-in function bvp4c of Matlab software was utilized to solve the transformed equation numerically. The graphical results were obtained for temperature, velocity, concentration, and microorganism distribution for various parameters. The numerical amounts of drag friction, heat transport rate, and motile density number for different parameters are presented through tables. It is seen that the fluid velocity is augmented by the increase of the curvature parameter, while a decrease occurs in the fluid velocity with an increase in the magnetic and slips parameters. The comparison of the present study with previously available studies is discussed, which shows a good agreement with published results.


2012 ◽  
Vol 39 (3) ◽  
pp. 233-254 ◽  
Author(s):  
Gnaneswara Reddy

In this paper, an analysis has been carried out to study heat and mass transfer effects on steady two-dimensional flow of an electrically conducting incompressible dissipating fluid past an inclined semi-infinite porous surface with heat generation. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two secondorder ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons with previously published work are performed and the results are found to be in very good agreement.


Sign in / Sign up

Export Citation Format

Share Document