scholarly journals Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maedeh Rahimnejad ◽  
Narges Nasrollahi Boroujeni ◽  
Sepideh Jahangiri ◽  
Navid Rabiee ◽  
Mohammad Rabiee ◽  
...  

AbstractEfficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.

2014 ◽  
Vol 2014 ◽  
pp. 1-2 ◽  
Author(s):  
Alessandro F. Pellegata ◽  
M. Adelaide Asnaghi ◽  
Ilaria Stefani ◽  
Anna Maestroni ◽  
Silvia Maestroni ◽  
...  

2014 ◽  
Vol 1 (1-4) ◽  
pp. 10-16 ◽  

Vascular tissue engineering attempts to grow blood vessels through the use of different scaffolds that allows vascular cells such as endothelial cells to form networks and organized in vascular tissue. Various biomaterials are used to produce scaffolds that allow growth and differentiation of stem cells; depending on the cell type and applications some materials are more suitable than other. The aim of this study was to evaluate the cytocompatibility of collagen based scaffolds and to assess the capacity of endothelial progenitor cells (EPC) isolated from human umbilical cord to form vascular networks on these scaffolds. Our results show that after 5 days in culture with collagen scaffolds, the EPC remained viable, a sign of biocompatibility with the 3D scaffolds. Scanning electron microscopy showed that in the collagen scaffolds EPC organize within networks and presents an abundant extracellular matrix that strengthen the links between them. When EPC were cultured on collagenchitosan scaffolds, they are more adherent to the scaffolds compared with collagen, exibiting a good capacity to form networks. This study shows that the collagen and collagen-chitosan scaffolds are not cytotoxic for EPC and they provide the possibility of being used in vascular tissue engineering to help creating blood vessels.


2006 ◽  
Vol 54 (S 1) ◽  
Author(s):  
K Kallenbach ◽  
J Heine ◽  
E Lefik ◽  
S Cebotari ◽  
A Lichtenberg ◽  
...  

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


Author(s):  
Faraz Fazal ◽  
Francisco Javier Diaz Sanchez ◽  
Muhammad Waqas ◽  
Vasileios Koutsos ◽  
Anthony Callanan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document