scholarly journals Functional Diversity Metrics: How They Are Affected by Landscape Change and How They Represent Ecosystem Functioning in the Tropics

2018 ◽  
Vol 3 (2) ◽  
pp. 35-42 ◽  
Author(s):  
Jack H. Hatfield ◽  
Michelle L. K. Harrison ◽  
Cristina Banks-Leite
2020 ◽  
Vol 651 ◽  
pp. 1-21
Author(s):  
L Sutton ◽  
K Iken ◽  
BA Bluhm ◽  
FJ Mueter

Alaskan Arctic shelf communities are currently experiencing dramatic changes that will likely affect ecosystem functioning of Arctic marine benthic communities. Here, functional diversity based on biological traits was used to assess differences and similarities in ecosystem functioning between 2 shelf systems that are geographically close but vary in many environmental influences: the Arctic Beaufort and Chukchi Sea epibenthic communities. We hypothesized that (1) patterns of functional composition and diversity metrics reflect patterns in taxonomic composition and diversity metrics in these 2 shelf communities; and (2) patterns in functional diversity metrics are distinct between the 2 shelves. We evaluated 9 biological traits (body form, body size, feeding habit, fragility, larval development, living habit, movement, reproductive strategy, sociability) for 327 taxa in 2014 and 2015. For each trait, multiple modalities (specific expressions within a trait) were considered. Patterns in functional diversity metrics on both shelves reflected those in taxonomic diversity metrics. However, shelf communities were more similar in functional- than in taxonomic composition. Beaufort Sea communities had higher functional dissimilarity and functional evenness driven by differences in the modalities within body form, body size, larval development, and reproductive strategy. These traits primarily affect nutrient cycling, energy turnover, and recovery from disturbances, suggesting a stronger potential for future maintenance of ecosystem function, and indicating a more even use of resources in the Beaufort Sea. The combination of functional and taxonomic diversity metrics enabled a comprehensive understanding of how ecological niche space is used and how epibenthic communities function in Alaskan Arctic shelf systems.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12191
Author(s):  
Marko Gómez-Hernández ◽  
Emily Avendaño-Villegas ◽  
María Toledo-Garibaldi ◽  
Etelvina Gándara

Macromycetes are a group of fungi characterized by the production of fruit bodies and are highly relevant in most terrestrial ecosystems as pathogens, mutualists, and organic matter decomposers. Habitat transformation can drastically alter macromycete communities and diminish the contribution of these organisms to ecosystem functioning; however, knowledge on the effect of urbanization on macrofungal communities is scarce. Diversity metrics based on functional traits of macromycete species have shown to be valuable tools to predict how species contribute to ecosystem functionality since traits determine the performance of species in ecosystems. The aim of this study was to assess patterns of species richness, functional diversity, and composition of macrofungi in an urban ecosystem in Southwest Mexico, and to identify microclimatic, environmental, and urban factors related to these patterns in order to infer the effect of urbanization on macromycete communities. We selected four oak forests along an urbanization gradient and established a permanent sampling area of 0.1 ha at each site. Macromycete sampling was carried out every week from June to October 2017. The indices used to measure functional diversity were functional richness (FRic), functional divergence (FDig), and functional evenness (FEve). The metric used to assess variation of macrofungal ecological function along the study area was the functional value. We recorded a total of 134 macromycete species and 223 individuals. Our results indicated a decline of species richness with increased urbanization level related mainly to microclimatic variables, and a high turnover of species composition among study sites, which appears to be related to microclimatic and urbanization variables. FRic decreased with urbanization level, indicating that some of the available resources in the niche space within the most urbanized sites are not being utilized. FDig increased with urbanization, which suggests a high degree of niche differentiation among macromycete species within communities in urbanized areas. FEve did not show notable differences along the urbanization gradient, indicating few variations in the distribution of abundances within the occupied sections of the niche space. Similarly, the functional value was markedly higher in the less urbanized site, suggesting greater performance of functional guilds in that area. Our findings suggest that urbanization has led to a loss of macromycete species and a decrease in functional diversity, causing some sections of the niche space to be hardly occupied and available resources to be under-utilized, which could, to a certain extent, affect ecosystem functioning and stability.


2014 ◽  
Vol 34 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Yantao Song ◽  
Ping Wang ◽  
Guangdi Li ◽  
Daowei Zhou

2017 ◽  
Vol 8 (9) ◽  
pp. 1072-1080 ◽  
Author(s):  
Fons Plas ◽  
Roel Klink ◽  
Pete Manning ◽  
Han Olff ◽  
Markus Fischer

2020 ◽  
Author(s):  
Beatriz P. Cazorla ◽  
Javier Cabello ◽  
Andrés Reyes ◽  
Emilio Guirado ◽  
Julio Peñas ◽  
...  

Abstract. Conservation Biology faces the challenge of safeguarding the ecological processes that sustain biodiversity. Characterization and evaluation of these processes can be carried out through attributes or functional traits related to the exchanges of matter and energy between vegetation and the atmosphere. Nowadays, the use of satellite imagery provides useful methods to produce a spatially continuous characterization of ecosystem functioning and processes at regional scales. Our dataset characterizes the patterns of ecosystem functioning in Sierra Nevada (Spain) from the vegetation greenness dynamics captured through the spectral vegetation index EVI (Enhanced Vegetation Index) since 2001 to 2018 (product MOD13Q1.006 from MODIS sensor). First, we provided three Ecosystem Functional Attributes (EFAs) (i.e., descriptors of annual primary production, seasonality, and phenology of carbon gains), as well as their integration into a synthetic mapping of Ecosystem Functional Types (EFTs). Second, we provided two measures of functional diversity: EFT richness and EFT rarity. Finally, in addition to the yearly maps, we calculated interannual summaries, i.e., means and inter-annual variabilities. Examples of research and management applications of these data sets are also included to highlight the value of EFAs and EFTs to improve the understanding and monitoring ecosystem processes across environmental gradients. The datasets are available in two open-source sites (PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al. 2019) and http://obsnev.es/apps/efts_SN.html), and bring to scientists, managers and the general public valuable information on the first characterization of the functional diversity at ecosystem level developed in a Mediterranean hotspot. Sierra Nevada represents an exceptional ecology laboratory of field conditions, where a long-term monitoring (LTER) program was established 10 years ago. The data availability on biodiversity, climate, ecosystem services, hydrology, land-use changes and management practices from Sierra Nevada, will allow to explore the relationships between these other environmental data and ecosystem functional data that we provide in this work.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge O. López-Martínez ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationships between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. There is no general pattern regarding the relationship found in various studies, and positive, unimodal, negative, and neutral relationships keep the issue controversial. In this study, taxonomic diversity vs functional diversity as drivers of above-ground biomass were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypoteses.Methods: Using data from 414 permanent sampling plots, covering 23% of temperate forests in the Sierra Madre Occiental (Mexico), we estimated the above-ground biomass (AGB) for trees ≥7.5 cm d.b.h. in managed and unmanaged stands. We evaluated AGB-diversity relationships (species richness, Shannon-Wiener and Simpson indices), AGB-weighted mean community values ​​(CWM) of tree species functional traits (maximum height, leaf size, and wood density) and five measures of functional diversity (functional dispersion, functional richness, functional uniformity, functional diversity, and RaoQ index).Results: We reveal a consistent hump-shaped relationship between aboveground biomass and species richness in managen and unmanaged forest. CWM_Hmax was the most important predictor of AGB in both managed and unmanaged stands, which suggests that the mechanism that explains the above-ground biomass in these ecosystems is dominated by certain highly productive species in accordance of the mass-ratio hypothesis. There were no significant relationships between taxonomic diversity metrics (Shannon-Wiener and Simpson indices) or measures of functional diversity with AGB. The results support the mass-ratio hypothesis to explain the AGB variations.Conclusions: We concluded that diversity does not influence biomass production in the temperate mixed-species and uneven-aged forests of northern Mexico. These forests showed the classic hump-shaped productivity-species richness relationship, with biomass accumulation increasing at low to intermediate levels of species plant diversity and decreasing at high species richness. Functional diversity explains better forest productivity than classical diversity metrics.


Sign in / Sign up

Export Citation Format

Share Document