$$K_{-1}$$ and Higher $${\widetilde{K}}$$-Groups of Cones of Smooth Projective Plane Curves

Author(s):  
Taufik Yusof
Author(s):  
Grzegorz Malara ◽  
Piotr Pokora ◽  
Halszka Tutaj-Gasińska

AbstractIn this note we study curves (arrangements) in the complex projective plane which can be considered as generalizations of free curves. We construct families of arrangements which are nearly free and possess interesting geometric properties. More generally, we study 3-syzygy curve arrangements and we present examples that admit unexpected curves.


2016 ◽  
Vol 227 ◽  
pp. 189-213
Author(s):  
E. ARTAL BARTOLO ◽  
J. I. COGOLLUDO-AGUSTÍN ◽  
A. LIBGOBER

The paper studies a relation between fundamental group of the complement to a plane singular curve and the orbifold pencils containing it. The main tool is the use of Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient conditions for a plane singular curve to belong to an orbifold pencil, that is, a pencil of plane curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental group is nontrivial. We construct an example of a cyclic cover of the projective plane which is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent to which these conditions are necessary.


2005 ◽  
Vol 92 (1) ◽  
pp. 99-138 ◽  
Author(s):  
J. FERNÁNDEZ DE BOBADILLA ◽  
I. LUENGO-VELASCO ◽  
A. MELLE-HERNÁNDEZ ◽  
A. NÉMETHI

In 2002, L. Nicolaescu and the fourth author formulated a very general conjecture which relates the geometric genus of a Gorenstein surface singularity with rational homology sphere link with the Seiberg--Witten invariant (or one of its candidates) of the link. Recently, the last three authors found some counterexamples using superisolated singularities. The theory of superisolated hypersurface singularities with rational homology sphere link is equivalent with the theory of rational cuspidal projective plane curves. In the case when the corresponding curve has only one singular point one knows no counterexample. In fact, in this case the above Seiberg--Witten conjecture led us to a very interesting and deep set of `compatibility properties' of these curves (generalising the Seiberg--Witten invariant conjecture, but sitting deeply in algebraic geometry) which seems to generalise some other famous conjectures and properties as well (for example, the Noether--Nagata or the log Bogomolov--Miyaoka--Yau inequalities). Namely, we provide a set of `compatibility conditions' which conjecturally is satisfied by a local embedded topological type of a germ of plane curve singularity and an integer $d$ if and only if the germ can be realized as the unique singular point of a rational unicuspidal projective plane curve of degree $d$. The conjectured compatibility properties have a weaker version too, valid for any rational cuspidal curve with more than one singular point. The goal of the present article is to formulate these conjectured properties, and to verify them in all the situations when the logarithmic Kodaira dimension of the complement of the corresponding plane curves is strictly less than 2.


2020 ◽  
Vol 30 (08) ◽  
pp. 1651-1669
Author(s):  
Younggi Lee ◽  
Jeehoon Park ◽  
Junyeong Park ◽  
Jaehyun Yim

We provide an explicit algorithm to compute a lifted Massey triple product relative to a defining system for a smooth projective plane curve [Formula: see text] defined by a homogeneous polynomial [Formula: see text] over a field. The main idea is to use the description (due to Carlson and Griffiths) of the cup product for [Formula: see text] in terms of the multiplications inside the Jacobian ring of [Formula: see text] and the Cech–deRham complex of [Formula: see text]. Our algorithm gives a criterion whether a lifted Massey triple product vanishes or not in [Formula: see text] under a particular nontrivial defining system of the Massey triple product and thus can be viewed as a generalization of the vanishing criterion of the cup product in [Formula: see text] of Carlson and Griffiths. Based on our algorithm, we provide explicit numerical examples by running the computer program.


2020 ◽  
Vol 208 (1) ◽  
pp. 31-48
Author(s):  
Thomas Wennink

AbstractThe trigonal curves of genus 5 can be represented by projective plane quintics that have one singularity of delta invariant one. Combining this with a partial sieve method for plane curves we count the number of such curves over any finite field. The main application is that this gives the motivic Euler characteristic of the moduli space of trigonal curves of genus 5.


1996 ◽  
Vol 48 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Sandeep H. Holay

AbstractWe consider the surface obtained from the projective plane by blowing up the points of intersection of two plane curves meeting transversely. We find minimal generating sets of the defining ideals of these surfaces embedded in projective space by the sections of a very ample divisor class. All of the results are proven over an algebraically closed field of arbitrary characteristic.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950020 ◽  
Author(s):  
Alwaleed Kamel ◽  
Waleed Khaled Elshareef

In this paper, we study the [Formula: see text]-Weierstrass points on smooth projective plane quartic curves and investigate their geometry. Moreover, we use a technique to determine in a very precise way the distribution of such points on any smooth projective plane quartic curve. We also give a variety of examples that illustrate and enrich the subject.


2019 ◽  
Vol Volume 3 ◽  
Author(s):  
Mattias Hemmig

In this article, we study isomorphisms between complements of irreducible curves in the projective plane $\mathbb{P}^2$, over an arbitrary algebraically closed field. Of particular interest are rational unicuspidal curves. We prove that if there exists a line that intersects a unicuspidal curve $C \subset \mathbb{P}^2$ only in its singular point, then any other curve whose complement is isomorphic to $\mathbb{P}^2 \setminus C$ must be projectively equivalent to $C$. This generalizes a result of H. Yoshihara who proved this result over the complex numbers. Moreover, we study properties of multiplicity sequences of irreducible curves that imply that any isomorphism between the complements of these curves extends to an automorphism of $\mathbb{P}^2$. Using these results, we show that two irreducible curves of degree $\leq 7$ have isomorphic complements if and only if they are projectively equivalent. Finally, we describe new examples of irreducible projectively non-equivalent curves of degree $8$ that have isomorphic complements.


Sign in / Sign up

Export Citation Format

Share Document