scholarly journals Quasi-solid-state solar rechargeable capacitors based on in-situ Janus modified electrode for solar energy multiplication effect

2020 ◽  
Vol 63 (9) ◽  
pp. 1693-1702 ◽  
Author(s):  
Peng Chen ◽  
Tian-Tian Li ◽  
Guo-Ran Li ◽  
Xue-Ping Gao
2015 ◽  
Vol 8 (12) ◽  
pp. 3572-3576 ◽  
Author(s):  
Evan A. Gizzie ◽  
J. Scott Niezgoda ◽  
Maxwell T. Robinson ◽  
Andrew G. Harris ◽  
G. Kane Jennings ◽  
...  

Novel biophotovoltaic devices were prepared by electrochemically entrapping Photosystem I in a conductive polyaniline film, grown in situ on TiO2 anodes.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


2021 ◽  
Vol 411 ◽  
pp. 128534
Author(s):  
Jianli Wang ◽  
Zhao Zhang ◽  
Hangjun Ying ◽  
Gaorong Han ◽  
Wei-Qiang Han

2021 ◽  
pp. 2005878
Author(s):  
Xiangsi Liu ◽  
Ziteng Liang ◽  
Yuxuan Xiang ◽  
Min Lin ◽  
Qi Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document