scholarly journals Employing the thiol-ene click reaction via metal-organic frameworks for integrated sonodynamic-starvation therapy as an oncology treatment

Author(s):  
Sen Jiang ◽  
Qijia He ◽  
Chengcheng Li ◽  
Kun Dang ◽  
Ling Ye ◽  
...  
2013 ◽  
Vol 66 (4) ◽  
pp. 409 ◽  
Author(s):  
Alexandre Burgun ◽  
Christian J. Doonan ◽  
Christopher J. Sumby

One approach to exploit metal–organic frameworks (MOFs) as heterogeneous catalyst platforms requires the development of materials containing groups that can be utilised to anchor a catalytic moiety into the links within the structure. Here we report the synthesis of the first integrated triazolium-containing MOF linker and the first MOFs containing linkers of this type. 1,4-Bis(4-benzoic acid)-1-methyl-1H-1,2,3-triazolium chloride, H2L1Me, was synthesised in three steps by a ‘click’ reaction of methyl 4-ethynylbenzoate with methyl 4-azidobenzoate, methylation using methyl triflate, followed by ester hydrolysis in overall 74 % yield. The equivalent neutral triazole precursor, 1,4-bis(4-benzoic acid)-1H-1,2,3-triazole hydrochloride, H2L1(HCl), was also prepared and a comparison of the chemistry with Zn(NO3)2·6H2O and Cu(NO3)2·3H2O is presented. The results support the use of reaction conditions to control interpenetration and provide additional evidence that the charge on structurally similar ligands can drastically alter the types of structures that are accessible due to the requirements for charge balance in the final product.


2020 ◽  
Vol 2020 (5) ◽  
pp. 461-466 ◽  
Author(s):  
Madhan Vinu ◽  
Kulandaivel Sivasankar ◽  
Samikannu Prabu ◽  
Jeng-Liang Han ◽  
Chia-Her Lin ◽  
...  

2021 ◽  
Author(s):  
Lars Öhrström ◽  
Francoise M. Amombo Noa

2020 ◽  
Vol 7 (1) ◽  
pp. 221-231
Author(s):  
Seong Won Hong ◽  
Ju Won Paik ◽  
Dongju Seo ◽  
Jae-Min Oh ◽  
Young Kyu Jeong ◽  
...  

We successfully demonstrate that the chemical bath deposition (CBD) method is a versatile method for synthesizing phase-pure and uniform MOFs by controlling their nucleation stages and pore structures.


2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


2020 ◽  
Author(s):  
Ali Raza ◽  
Arni Sturluson ◽  
Cory Simon ◽  
Xiaoli Fern

Virtual screenings can accelerate and reduce the cost of discovering metal-organic frameworks (MOFs) for their applications in gas storage, separation, and sensing. In molecular simulations of gas adsorption/diffusion in MOFs, the adsorbate-MOF electrostatic interaction is typically modeled by placing partial point charges on the atoms of the MOF. For the virtual screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2,250 MOFs labeled with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding environments of the atoms and learns to predict partial atomic charges from these features. Our trained MPNN assigns high-fidelity partial point charges to MOFs with orders of magnitude lower computational cost than electronic structure calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.<br>


Sign in / Sign up

Export Citation Format

Share Document