scholarly journals Investigation of Power losses on Solar Photovoltaic Array Interconnections Under Mismatch Conditions

Author(s):  
Sai Krishna G ◽  
Tukaram Moger

The electrical power generation from solar photo voltaic arrays increases by reducing partial shading effect due to the deposition of dust in modules, shadow of nearby buildings, cloud coverage leads to mismatching power losses. This paper gives the detailed analysis of modeling, simulation and performance analysis of different 4x4 size PV array topologies under different irradiance levels and to extract output power of panels maximum by reducing the mismatching power losses. For this analysis, a comparative study of six PV array topologies are Series, Parallel, Series-Parallel, Total-Cross-Tied, Bridge Linked and Honey-Comb are considered under various shading conditions such as one module shading, one string shading, zigzag type partial shading and total PV array partially shaded cases. The performance of above six topologies are compare with mismatching power losses and fill-factor. For designing and simulation of different PV array configurations/topologies in MaTLab/Simulink, the LG Electronics LG215P1W PV module parameters are used in all PV modules.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
R. Ramaprabha ◽  
B. L. Mathur

The aim of this paper is to investigate the effects of partial shading on energy output of different Solar Photovoltaic Array (SPVA) configurations and to mitigate the losses faced in Solar Photovoltaic (SPV) systems by incorporating bypass diodes. Owing to the practical difficulty of conducting experiments on varied array sizes, a generalized MATLAB M-code has been developed for any required array size, configuration, shading patterns, and number of bypass diodes. The proposed model which also includes the insolation-dependent shunt resistance can provide sufficient degree of precision without increasing the computational effort. All the configurations have been analyzed and comparative study is made for different random shading patterns to determine the configuration less susceptible to power losses under partial shading. Inferences have been drawn by testing several shading scenarios.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Arunendra K. Tiwari ◽  
Vimal C. Sontake ◽  
Vilas R. Kalamkar

Abstract Lower operating temperatures of the photovoltaic (PV) cells increase the performance and efficiency of any PV installation. The efficiency of solar photovoltaic water pumping system (SPVWPS) decreases considerably with the increase in the PV cell temperature. In this paper, the performance of a 2 hp SPVWPS has been investigated experimentally, for the influence of panel cooling, using water. The experimental observations have been made under climatic conditions of Visvesvaraya National Institute of Technology, Nagpur campus, India, during the year 2018. The performance was evaluated under four different cases: (a) without panel cooling, (b) with water cooling on the top of the panel surface, (c) with water cooling on beneath the surface of the panel, and (d) with water cooling beneath the surface of the panel using jute. The effect of different cooling cases on the various performance parameters such as discharge, power output, pump efficiency, and system efficiency has been analyzed and discussed. The results showed that the water cooling on the top of the panel and beneath the surface of the panel with jute has considerable influence on performance enhancement when compared with other cases.


Sign in / Sign up

Export Citation Format

Share Document