scholarly journals Chunky Graphite in Ferritic Spheroidal Graphite Cast Iron: Formation, Prevention, Characterization, Impact on Properties: An Overview

2019 ◽  
Vol 14 (2) ◽  
pp. 454-488 ◽  
Author(s):  
Wolfram Baer

Abstract Ferritic spheroidal graphite cast iron (SGI) materials have a remarkable technical potential and economic impact in modern industry. These features are closely related to the question of how the cast materials can be produced without structural defects and graphite degenerations such as, for example, chunky graphite. Although the chunky graphite degeneration superficially seems to be well known, its metallurgical background is still controversially discussed, appropriate field-tested nondestructive tools for its quantification in castings are lacking, and the knowledge on its impact on material properties is fairly limited. Addressing this status, the article is providing a current overview on the subject. Existing theories on formation and growth mechanisms of chunky graphite are briefly reviewed. Furthermore, from a metallurgical point of view, causes for the appearance of chunky graphite as well as preventive measures are concisely summarized. Particular attention is paid to the morphology of chunky graphite and how it can be characterized by destructive and nondestructive techniques. Special emphasis was laid on providing a comprehensive overview on the impact of chunky graphite on strength, ductility, fatigue limit, fatigue crack growth rate as well as fracture toughness of ferritic SGI materials based on experimental data. Moreover, conclusions for the assessment of castings affected by chunky graphite are drawn.

2018 ◽  
Vol 59 (3) ◽  
pp. 412-419 ◽  
Author(s):  
Hideaki Nakayama ◽  
Bai-Rong Zhao ◽  
Noriaki Furusato ◽  
Satoru Yamada ◽  
Tsuyoshi Nishi ◽  
...  

2007 ◽  
Vol 20 (6) ◽  
pp. 319-324 ◽  
Author(s):  
I. Asenjo ◽  
P. Larranaga ◽  
J. Sertucha ◽  
R. Suárez ◽  
J.-M. Gómez ◽  
...  

2007 ◽  
Vol 537-538 ◽  
pp. 389-396 ◽  
Author(s):  
Ibolya Kardos ◽  
Zoltán Gácsi ◽  
Péter János Szabó

Color etching is a widely used technique for visualizing different phases in metallic materials. Its advantage to the traditional etching techniques is that it gives additional information within one phase, namely, the color shade of a given phase can change in a certain range. This paper demonstrates that, due to the physics of the color etching, the shade of a phase also depends on the crystallographic orientation of the investigated grain. As a test material, spheroidal graphite cast iron was used, and individual grain orientation was identified by automated electron back scattering diffraction (EBSD). Results showed that there is a strong correlation between grain orientation and the shades obtained by color etching.


Wear ◽  
1996 ◽  
Vol 198 (1-2) ◽  
pp. 150-155 ◽  
Author(s):  
K. Shimizu ◽  
T. Noguchi ◽  
T. Kamada ◽  
H. Takasaki

Materia Japan ◽  
2009 ◽  
Vol 48 (12) ◽  
pp. 624-624 ◽  
Author(s):  
Yasuhide Ishiguro ◽  
Kenji Ichino ◽  
Hideto Takasugi

2007 ◽  
Vol 561-565 ◽  
pp. 925-928 ◽  
Author(s):  
Seijiro Maki ◽  
Kazuhito Suzuki ◽  
Kenichiro Mori

Feasibility of semisolid forging of cast iron using rapid resistance heating was experimentally investigated. Gray pig iron FC250 and spheroidal graphite cast iron FCD600, whose carbon equivalents are both 4.3% in mass, were used for the experiments. Since these cast irons have a narrow semisolid temperature range, an AC power supply with an input electric energy control function was used. In this study, the resistance heating characteristics of the cast irons were firstly examined, and then their semisolid forging experiments were conducted. In the forging experiments, the conditions of the forgings such as microstructures and hardness properties were examined, and the feasibility of the semisolid forging of cast iron using resistance heating was discussed. As a result, it was found that the method presented here is highly feasible.


Sign in / Sign up

Export Citation Format

Share Document