scholarly journals A Modified Method for Los Angeles Abrasion Test

Author(s):  
Tariq Umar ◽  
Charles Egbu ◽  
Messaoud Saidani
2017 ◽  
Author(s):  
Adelia Dwidarma Nataadmadja ◽  
Oki Setyandito ◽  
Eduardi Prahara ◽  
Ida Riyanti

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 492 ◽  
Author(s):  
Saisai Zhang ◽  
Jianzhong Pei ◽  
Rui Li ◽  
Yong Wen ◽  
Jiupeng Zhang

Under the repeated loading, the continuous impact and friction of tires on aggregates resulted in some changes in their morphology, which may cause rutting, decrease in skid resistance, and fatigue damage of the road. In order to explore specific changes in coarse aggregate morphology, the Los Angeles abrasion test was used to simulate the force exerted on coarse aggregates and the morphologies of different aggregates before and after abrasion were compared. Four types of coarse aggregates were selected and their mineral compositions were analyzed by X-Ray Diffraction (XRD). The morphological characteristics were measured using Aggregate Image Measurement System (AIMS-Ⅱ), including angularity, surface texture, sphericity and Flat and Elongation (F and E) ratio. Results showed that the angularity value for each type of aggregates significantly reduced after abrasion and the angularity reductions of various aggregates were consistent with the results of abrasion test, indicting the angularity reduction was the main component of abrasion loss. Whereas, there was no significant different between the surface texture of coarse aggregates before and after abrasion. For shape properties, both sphericity and F and E ratio results showed that aggregates with excessively high F and E ratio were easy to break, which might cause rutting and were harmful to pavement. Therefore, for pavements with high performance requirement, coarse aggregates with large angularity and low abrasion value should be preferred, whereas the quantity of particles with excessively high F and E ratio should be controlled.


Author(s):  
M. A. Eden

AbstractThis paper briefly introduces the basis of abrasion testing and suggests a rapid and simple test that allows the abrasion resistance of specific materials to be evaluated. Small, individual pieces of rock, mortar, or concrete can be tested and the method has been used to evaluate the potential for surface abrasion of concrete surfaces. Many of the commonly used test methods for measuring abrasion resistance of construction materials are aggregate tests such as the QMW mill abrasion test and the ASTM Los Angeles abrasion test which measure the combined resistance of a material to impact and abrasion. Other tests such as the aggregate abrasion and polished stone value tests require a smaller numberof resin mounted aggregate pieces to be studied. The ASTM surface abrasion test for concrete uses physically large flat test pieces. Like the ASTM test, the test method described in this paper measures only the abrasion resistance. However, it provides a means of comparing the abrasion resistance of small pieces of construction material and introduces quartz as a reference material.The test uses a mixture of oil and carborundum as a grinding medium with 10 mm square test pieces held by a standard load against a rotating steel lapping wheel in a rotating jig. The results are expressed as a ratio of the abrasion rate of the test material to that of quartz tested in the same way. This comparative approach enables the test to be carried out using equipment of various designs.


2014 ◽  
Vol 2448 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Yu Qian ◽  
Huseyin Boler ◽  
Maziar Moaveni ◽  
Erol Tutumluer ◽  
Youssef M. A. Hashash ◽  
...  

2013 ◽  
Vol 12 (04) ◽  
pp. 1350021 ◽  
Author(s):  
S. KAHRAMAN ◽  
M. S. DELIBALTA ◽  
R. COMAKLI

Compared to the indirect tests, the determination of the Los Angeles abrasion loss is time consuming and expensive, and requires a large amount of samples. For this reason, the prediction of Los Angeles abrasion loss from some indirect tests is useful for preliminary studies. In this study, Los Angeles abrasion, noise level (NL) measurement, density, and porosity tests were carried out on 27 different rock types such as igneous, metamorphic, and sedimentary. The test results were evaluated using the simple and multiple regression analysis. A good relation was found between the Los Angeles abrasion loss and the NL. In order to check the possibility of obtaining more significant relations, multiple regression analysis was performed by including density and porosity values. However, the regression analysis showed that the correlation coefficients of the multiple regression equations were slightly higher than that of the simple regression equation. Since the simple regression equation is practical and statistically significant, it is suggested for estimation purpose. In conclusion, it can be said that Los Angeles abrasion loss of aggregates can be reliably estimated from NL measurement.


2021 ◽  
Vol 36 (1) ◽  
pp. 25-36
Author(s):  
Reza Mikaeil ◽  
Akbar Esmaeilzadeh ◽  
Sara Aghaei ◽  
Sina Shaffiee Haghshenas ◽  
Amir Jafarpour ◽  
...  

One of the most significant factors in the estimation of dimension stone quarry cost is the production rate of rock cutting machines. Evaluating the production rate of chain-saw machines is a very significant and practical issue. In this research, it has been attempted to evaluate and select the suitable working-face for a quarry by examining the maximum production rate in the Dehbid and Shayan marble quarries. For this purpose, fi eld studies were carried out which included measuring operational characteristics of the chain-saw cutting machine, the production rate and sampling for laboratory tests from seven active case studies. Subsequently, the physical and mechanical properties of rocks including: Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Los Angeles abrasion, quartz content, water absorption percentage, porosity, Schmidt hardness and grain size for all sample measurements were studied after transferring the samples to a rock-mechanics laboratory. Finally, the sawability of the quarried working-faces was evaluated using the PROMETHEE multi-criteria decision-making (MCDM) model according to the physical and mechanical properties. The results of the study indicated that the number 1 and 5 working-faces from the Dehbid and Shayan quarries are the most suitable working-faces in terms of production rate with the maximum recorded production values (4.95 and 3.1 m2 /h), and with net fl ow rates (2.67 and -0.36) respectively.


Sign in / Sign up

Export Citation Format

Share Document