scholarly journals 3D hypothesis clustering for cross-view matching in multi-person motion capture

2020 ◽  
Vol 6 (2) ◽  
pp. 147-156 ◽  
Author(s):  
Miaopeng Li ◽  
Zimeng Zhou ◽  
Xinguo Liu

Abstract We present a multiview method for markerless motion capture of multiple people. The main challenge in this problem is to determine cross-view correspondences for the 2D joints in the presence of noise. We propose a 3D hypothesis clustering technique to solve this problem. The core idea is to transform joint matching in 2D space into a clustering problem in a 3D hypothesis space. In this way, evidence from photometric appearance, multiview geometry, and bone length can be integrated to solve the clustering problem efficiently and robustly. Each cluster encodes a set of matched 2D joints for the same person across different views, from which the 3D joints can be effectively inferred. We then assemble the inferred 3D joints to form full-body skeletons for all persons in a bottom–up way. Our experiments demonstrate the robustness of our approach even in challenging cases with heavy occlusion, closely interacting people, and few cameras. We have evaluated our method on many datasets, and our results show that it has significantly lower estimation errors than many state-of-the-art methods.

2021 ◽  
pp. 110414
Author(s):  
Robert M. Kanko ◽  
Elise K. Laende ◽  
Gerda Strutzenberger ◽  
Marcus Brown ◽  
W. Scott Selbie ◽  
...  

2009 ◽  
Vol 87 (1-2) ◽  
pp. 156-169 ◽  
Author(s):  
Stefano Corazza ◽  
Lars Mündermann ◽  
Emiliano Gambaretto ◽  
Giancarlo Ferrigno ◽  
Thomas P. Andriacchi

2006 ◽  
Author(s):  
Lars Mündermann ◽  
Stefano Corazza ◽  
Ajit M. Chaudhari ◽  
Thomas P. Andriacchi ◽  
Aravind Sundaresan ◽  
...  

Author(s):  
Bodo Rosenhahn ◽  
Christian Schmaltz ◽  
Thomas Brox ◽  
Joachim Weickert ◽  
Hans-Peter Seidel

Author(s):  
Daniele Regazzoni ◽  
Andrea Vitali ◽  
Filippo Colombo Zefinetti ◽  
Caterina Rizzi

Abstract Nowadays, healthcare centers are not familiar with quantitative approaches for patients’ gait evaluation. There is a clear need for methods to obtain objective figures characterizing patients’ performance. Actually, there are no diffused methods for comparing the pre- and post-operative conditions of the same patient, integrating clinical information and representing a measure of the efficiency of functional recovery, especially in the short-term distance of the surgical intervention. To this aim, human motion tracking for medical analysis is creating new frontiers for potential clinical and home applications. Motion Capture (Mocap) systems are used to allow detecting and tracking human body movements, such as gait or any other gesture or posture in a specific context. In particular, low-cost portable systems can be adopted for the tracking of patients’ movements. The pipeline going from tracking the scene to the creation of performance scores and indicators has its main challenge in the data elaboration, which depends on the specific context and to the detailed performance to be evaluated. The main objective of this research is to investigate whether the evaluation of the patient’s gait through markerless optical motion capture technology can be added to clinical evaluations scores and if it is able to provide a quantitative measure of recovery in the short postoperative period. A system has been conceived, including commercial sensors and a way to elaborate data captured according to caregivers’ requirements. This allows transforming the real gait of a patient right before and/or after the surgical procedure into a set of scores of medical relevance for his/her evaluation. The technical solution developed in this research will be the base for a large acquisition and data elaboration campaign performed in collaboration with an orthopedic team of surgeons specialized in hip arthroplasty. This will also allow assessing and comparing the short run results obtained by adopting different state-of-the-art surgical approach for the hip replacement.


Sign in / Sign up

Export Citation Format

Share Document