scholarly journals Homography-guided stereo matching for wide-baseline image interpolation

2021 ◽  
Vol 8 (1) ◽  
pp. 119-133
Author(s):  
Yuan Chang ◽  
Congyi Zhang ◽  
Yisong Chen ◽  
Guoping Wang

AbstractImage interpolation has a wide range of applications such as frame rate-up conversion and free viewpoint TV. Despite significant progresses, it remains an open challenge especially for image pairs with large displacements. In this paper, we first propose a novel optimization algorithm for motion estimation, which combines the advantages of both global optimization and a local parametric transformation model. We perform optimization over dynamic label sets, which are modified after each iteration using the prior of piecewise consistency to avoid local minima. Then we apply it to an image interpolation framework including occlusion handling and intermediate image interpolation. We validate the performance of our algorithm experimentally, and show that our approach achieves state-of-the-art performance.

2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


Author(s):  
R. L. Kirk ◽  
E. Howington-Kraus ◽  
T. M. Hare ◽  
L. Jorda

We have investigated how the quality of stereoscopically measured topography degrades with varying illumination, in particular the ranges of incidence angles and illumination differences over which useful digital topographic models (DTMs) can be recovered. Our approach is to make high-fidelity simulated image pairs of known topography and compare DTMs from stereoanalysis of these images with the input data. Well-known rules of thumb for horizontal resolution (>3–5 pixels) and matching precision (~0.2–0.3 pixels) are generally confirmed, but the best achievable resolution at high incidence angles is ~15 pixels, probably as a result of smoothing internal to the matching algorithm. Single-pass stereo imaging of Europa is likely to yield DTMs of consistent (optimal) quality for all incidence angles ≤85°, and certainly for incidence angles between 40° and 85°. Simulations with pairs of images in which the illumination is not consistent support the utility of shadow tip distance (STD) as a measure of illumination difference, but also suggest new and simpler criteria for evaluating the suitability of stereopairs based on illumination geometry. Our study was motivated by the needs of a mission to Europa, but the approach and (to first order) the results described here are relevant to a wide range of planetary investigations.


Sign in / Sign up

Export Citation Format

Share Document