adversarial model
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 60)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Hai-yan Yao ◽  
Wang-gen Wan ◽  
Xiang Li

Abstract The outbreak of coronavirus disease 2019(COVID-19) is spreading rapidly around the world, resulting in a global pandemic. Imaging techniques such as computed tomography (CT) play an essential role in the diagnosis and treatment of the disease since lung infection or pneumonia is a common complication. However, training a deep network to learn how to diagnose COVID-19 rapidly and accurately in CT images and segment the infected regions like a radiologist is challenging. Since the infectious area are difficult to distinguish, and manually annotation the segmentation results is time-consuming. To tackle these problems, we propose an efficient method based on a deep adversarial network to segment the infection regions automatically. Then the predicted segment results can assist the diagnosis network in identifying the COVID-19 samples from the CT images. On the other hand, a radiologist-like segmentation network provides detailed information of the infectious regions by separating areas of ground-glass, consolidation, and pleural effusion, respectively. Our method can accurately predict the COVID-19 infectious probability and provides lesion regions in CT images with limited training data. Additionally, we have established a public dataset for multitask learning. Extensive experiments on diagnoses and segmentation show superior performance over state-of-the-art methods.


2021 ◽  
Author(s):  
Luiz Fernando F. P. de Lima ◽  
Danielle Rousy D. Ricarte ◽  
Clauirton A. Siebra

Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bin Guo ◽  
Fugen Zhou ◽  
Bo Liu ◽  
Xiangzhi Bai

Cerebrovascular segmentation is important in various clinical applications, such as surgical planning and computer-aided diagnosis. In order to achieve high segmentation performance, three challenging problems should be taken into consideration: (1) large variations in vascular anatomies and voxel intensities; (2) severe class imbalance between foreground and background voxels; (3) image noise with different magnitudes. Limited accuracy was achieved without considering these challenges in deep learning-based methods for cerebrovascular segmentation. To overcome the limitations, we propose an end-to-end adversarial model called FiboNet-VANGAN. Specifically, our contributions can be summarized as follows: (1) to relieve the first problem mentioned above, a discriminator is proposed to regularize for voxel-wise distribution consistency between the segmentation results and the ground truth; (2) to mitigate the problem of class imbalance, we propose to use the addition of cross-entropy and Dice coefficient as the loss function of the generator. Focal loss is utilized as the loss function of the discriminator; (3) a new feature connection is proposed, based on which a generator called FiboNet is built. By incorporating Dice coefficient in the training of FiboNet, noise robustness can be improved by a large margin. We evaluate our method on a healthy magnetic resonance angiography (MRA) dataset to validate its effectiveness. A brain atrophy MRA dataset is also collected to test the performance of each method on abnormal cases. Results show that the three problems in cerebrovascular segmentation mentioned above can be alleviated and high segmentation accuracy can be achieved on both datasets using our method.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6018
Author(s):  
Victor R. Kebande ◽  
Feras M. Awaysheh ◽  
Richard A. Ikuesan ◽  
Sadi A. Alawadi ◽  
Mohammad Dahman Alshehri

Continuous and emerging advances in Information and Communication Technology (ICT) have enabled Internet-of-Things (IoT)-to-Cloud applications to be induced by data pipelines and Edge Intelligence-based architectures. Advanced vehicular networks greatly benefit from these architectures due to the implicit functionalities that are focused on realizing the Internet of Vehicle (IoV) vision. However, IoV is susceptible to attacks, where adversaries can easily exploit existing vulnerabilities. Several attacks may succeed due to inadequate or ineffective authentication techniques. Hence, there is a timely need for hardening the authentication process through cutting-edge access control mechanisms. This paper proposes a Blockchain-based Multi-Factor authentication model that uses an embedded Digital Signature (MFBC_eDS) for vehicular clouds and Cloud-enabled IoV. Our proposed MFBC_eDS model consists of a scheme that integrates the Security Assertion Mark-up Language (SAML) to the Single Sign-On (SSO) capabilities for a connected edge to cloud ecosystem. MFBC_eDS draws an essential comparison with the baseline authentication scheme suggested by Karla and Sood. Based on the foundations of Karla and Sood’s scheme, an embedded Probabilistic Polynomial-Time Algorithm (ePPTA) and an additional Hash function for the Pi generated during Karla and Sood’s authentication were proposed and discussed. The preliminary analysis of the proposition shows that the approach is more suitable to counter major adversarial attacks in an IoV-centered environment based on the Dolev–Yao adversarial model while satisfying aspects of the Confidentiality, Integrity, and Availability (CIA) triad.


Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 559-569
Author(s):  
Jaleh Zand ◽  
Stephen Roberts

Generative Adversarial Networks (GANs) have gained significant attention in recent years, with impressive applications highlighted in computer vision, in particular. Compared to such examples, however, there have been more limited applications of GANs to time series modeling, including forecasting. In this work, we present the Mixture Density Conditional Generative Adversarial Model (MD-CGAN), with a focus on time series forecasting. We show that our model is capable of estimating a probabilistic posterior distribution over forecasts and that, in comparison to a set of benchmark methods, the MD-CGAN model performs well, particularly in situations where noise is a significant component of the observed time series. Further, by using a Gaussian mixture model as the output distribution, MD-CGAN offers posterior predictions that are non-Gaussian.


Author(s):  
Victor R. Kebande ◽  
Feras Awaysheh ◽  
Richard Ikuesan ◽  
Sadi Alawadi ◽  
Mohammad Alshehri

Continuous and emerging advances in Information and Communication Technology (ICT) have enabled IoT-to-Cloud applications to be induced by data pipelines coupled with Edge Intelligence-based architectures. Advanced vehicular networks greatly benefit from these architectures due to the implicit functionalities that are focused on realizing the Internet-of-Vehicle (IoV) vision. However, IoV is susceptible to attacks, where adversaries can easily exploit existing vulnerabilities. Several attacks may succeed due to inadequate or weaker authentication techniques. Hence, there is a timely need for hardening the authentication process through cutting-edge access control mechanisms. This paper proposes a Blockchain-based Multi-Factor authentication model that uses an embedded Digital Signature (MFBC_eDS) for vehicular clouds and Cloud-enabled IoV. Our proposed MFBC_eDS model consists of a scheme that integrates the Security Assertion Mark-up Language (SAML) to the Single Sign-On (SSO) capabilities for a connected Edge-to Cloud ecosystem. MFBC_eDS draws an essential comparison with the baseline authentication scheme suggested by Karla and Sood. Based on the foundations of Karla and Sood’s scheme, an embedded Probabilistic Polynomial-Time Algorithm (ePPTA) and an additional Hash function for the Pi generated during Karla and Sood’s authentication are proposed and discussed. The preliminary analysis of the proposition shows that the approach is more suitable to counter major adversarial attacks in an IoV-centered environment based on Dolev-Yao adversarial model while satisfying aspects of the CIA triad.


Sign in / Sign up

Export Citation Format

Share Document