An experimental investigation on the nano-fly ash preparation and its effects on the performance of self-compacting concrete at normal and elevated temperatures

Author(s):  
Yusra M. Alobaidi ◽  
Nahla N. Hilal ◽  
Rabar H. Faraj
Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 140
Author(s):  
Paraskevi D. Askouni ◽  
Catherine (Corina) G. Papanicolaou ◽  
Lazar Azdejkovic

Limited research has focused on the effect of high temperatures on the textile-reinforced mortar (TRM)-to-masonry bond. In this study, masonry prisms that were furnished with double-layered TRM strips were tested under shear bond conditions after their exposure to 200 °C and 400 °C for 1 h using the single-lap/single-prism setup. A total of four TRM systems were applied sharing the same type of textile –a dry AR glass fiber one– and different matrices: two cementitious matrices, namely a normal-weight (TRCNM) and a lightweight (TRCLM) one, and two counterpart alkali-activated matrices (TRAANM and TRAALM) based on metakaolin and fly ash. Specimens’ exposure to elevated temperatures did not alter their failure mode which was due to the sleeve fibers’ rupture along with core fibers’ slippage from the mortar. The residual bond capacity of the TRM systems decreases almost linearly with increasing exposure temperature. The alkali-activated textile reinforced mortars outperformed their cement-based counterparts in terms of bond strength at every temperature. All systems retained close to 50% of their original shear bond strength after heating at 400 °C. Per the type of binder, lightweight matrices resulted in either comparable (cement-based systems) or better (alkali-activated systems) heat protection at the TRM/masonry interface.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

Wood and fly ash were observed to have significant qualities that could improved the strength of self compacting concrete, the material were applied to increase the compressive strength of concrete strength, this material could be the demanding material for partial  replacement for cement, the study observed the behaviour of the material from experts that applied these material through experimental investigation, but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of this materials in compressive strength, this was to determine the  significant effect on the addictive applied as partial replacement for cement, lots of experts has done works on fly ash through experiment concept, but the application of predictive concept has not be carried out, the  adoption of this concept has expressed other parameters that contributed to the efficiency of  wood and fly ash as partial replacement for cement on self compacting concrete. The study adopting modeling and simulation observed 10 and 20% by weight of cement as it is reflected on its performance in the simulation, from the simulation wood recorded 10% as it was observed from the growth rate of this self compacting concrete reflected from the trend, the simulation for model validation were compared with the works of the studies carried out [20]. And both values developed best fits correlation


2021 ◽  
Vol 290 ◽  
pp. 123209
Author(s):  
R. Prakash ◽  
Sudharshan N. Raman ◽  
N. Divyah ◽  
C. Subramanian ◽  
C. Vijayaprabha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document