scholarly journals EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF SELF COMPACTING CONCRETE BY PARTIAL REPLACEMENT OF FLY ASH AND GGBS

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eluozo S.N. ◽  
Dimkpa K

Wood and fly ash were observed to have significant qualities that could improved the strength of self compacting concrete, the material were applied to increase the compressive strength of concrete strength, this material could be the demanding material for partial  replacement for cement, the study observed the behaviour of the material from experts that applied these material through experimental investigation, but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of this materials in compressive strength, this was to determine the  significant effect on the addictive applied as partial replacement for cement, lots of experts has done works on fly ash through experiment concept, but the application of predictive concept has not be carried out, the  adoption of this concept has expressed other parameters that contributed to the efficiency of  wood and fly ash as partial replacement for cement on self compacting concrete. The study adopting modeling and simulation observed 10 and 20% by weight of cement as it is reflected on its performance in the simulation, from the simulation wood recorded 10% as it was observed from the growth rate of this self compacting concrete reflected from the trend, the simulation for model validation were compared with the works of the studies carried out [20]. And both values developed best fits correlation


2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 761 ◽  
pp. 73-78 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Alkali-activated materials based on fly ash are widely developed and also produced on the present. Some of fly ashes are not suitable for production of alkali-activated materials because of their inconvenient chemical composition. Alumina-silicates are the most important components that are needed to accomplish the successful reaction. The proper content of amorphous phase of alumina-silicates and its proportion as well should be provided for the final composition of alkali-activated materials. The influence of pure aluminum oxide powder as well as raw milled natural perlite on mechanical properties and durability of alkali-activated mortars was investigated. These minerals were used as partial replacement of fly ash coming from black coal combustion. In addition, the mortars were prepared by using different alkali activators.


Concrete is the most essential construction materials in all over the world. It is necessary to search the cheaply obtainable material as admixture which might be partially replaced cement in the production of concrete. This project is an experimental investigation of the neem leaves ash as partial replacement for cement also fly ash is used for partial replacement of cement. The neem leaves were dried, burnt and heated in the furnace to produce Neem leaves Ash, which was discovered to posses Pozzolanic properties.the ordinary Portland cement was replaced by neem ash by 5%,10%,15%,20% and 25% by weight also flash replaced by 15%,20%,25% and 30% the cubes were crushed to know the comparative strength of the concrete at different curing days. The last result showed that workability and strength properties of the concrete was depended on water cement ratio, total days of curing, the percentage of replacement of Neem leaves ash for OPC . I. This project it was noticed that the result of 5% NLA and 15% fly ash and 10% NLA and 20% of fly ash were gradually increasing the strength at 28 days. Neem leaves play a vital role and behaviour of Neem leaves ash and flash used concrete will be studied


2018 ◽  
Vol 149 ◽  
pp. 01026
Author(s):  
Taieb Fatima ◽  
Belas Nadia ◽  
Belaribi Omar ◽  
Belguesmia Khalil ◽  
Hadj Sadok Rachid

The use of SCC has a particular interest in terms of sustainable development. Indeed, their specific formulation leads to a greater volume of dough than for common concretes, thus, a larger quantity of cement. However, for economical, ecological and technical reasons, it is sought to limit their cement content [1]. It is therefore necessary to almost always use mineral additions as a partial replacement for cement because the technology of self-compacting concretes can consume large quantities of fines, in this case calcinated mud issued from dams dredging sediments that can give and/or ameliorate characteristics and performances of this type of concretes. Four SCCs had been formulated from the same composition where the only percentage of calcinated mud of Chorfa (west of Algeria) dam changed (0%, 10%, 20% and 30%). The effect of calcinated mud on characteristics at fresh state of SCC according to AFGC was quantified. Mechanical strengths and shrinkage deformation (total, autogenous, drying) were evaluated. The results show the possibility to make SCCs with different dosages of calcinated mud having strengths that can defy those of the control SCC. The analysis of free deformations indicates the beneficial impact of the mud by contributing to decrease the amplitudes of the shrinkage compared to those of the control SCC.


Sign in / Sign up

Export Citation Format

Share Document