Susceptibility of the Box tree pyralid Cydalima perspectalis Walker (Lepidoptera: Crambidae) to potential biological control agents Neem (NeemAzal®-T/S) and entomopathogenic nematodes (Nemastar®) assessed in laboratory bioassays and field trials

2018 ◽  
Vol 125 (4) ◽  
pp. 365-375 ◽  
Author(s):  
Stefanie Göttig ◽  
Annette Herz
1997 ◽  
Vol 32 (2) ◽  
pp. 229-243 ◽  
Author(s):  
M.E. Barbercheck ◽  
W.C. Warrick

Field trials to test the efficacy of trap cropping and biological control for the management of Diabrotica undecimpunctata howardi Barber (Chrysomelidae: Luperini) in peanuts were conducted in 1992, 1993, and 1994. Cucurbita maxima Duchesne cv. ‘Blue Hubbard’ was used as a trap crop for adult beetles and the entomopathogenic nematodes, Steinernema carpocapse Weiser and Steinernema riobravis Cabanillas, Poinar and Raulston, were used as biological control agents against soil-inhabiting larvae. In 1992, peanut yields were highest in treatments that included a trap crop. Trap crop did not affect yield in 1993 or 1994. In 2 out of the 3 years, distribution of pod damage relative to the trap crop suggested that beetles oviposited more frequently in peanuts growing in the row next to the trap crop than in peanuts 3 rows from the trap crop. Although entomopathogenic nematodes persisted for a sufficient period to overlap with the presence of rootworms, they did not affect yield or pod damage in peanuts.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 117 ◽  
Author(s):  
Marion Javal ◽  
John S. Terblanche ◽  
Desmond E. Conlong ◽  
Antoinette P. Malan

Cacosceles newmannii (Coleoptera: Cerambycidae) is an emerging pest of sugarcane in South Africa. The larvae of this cerambycid beetle live within the sugarcane stalk and drill galleries that considerably reduce sugar production. To provide an alternative to chemical control, entomopathogenic nematodes and fungus were investigated as potential biological control agents to be used in an integrated pest management system. The nematodes Steinernema yirgalemense, S. jeffreyense, Heterorhabditis indica, and different concentrations of the fungus Metarhizium pinghaense were screened for efficacy (i.e., mortality rate) against larvae of C. newmannii. The different biocontrol agents used, revealed a low level of pathogenicity to C. newmannii larvae, when compared to control treatments.


2010 ◽  
Vol 100 (12) ◽  
pp. 1330-1339 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

The biological control agents Pseudomonas fluorescens A506 and Pantoea vagans C9-1 were evaluated individually and in combination for the suppression of fire blight of pear or apple in 10 field trials inoculated with the pathogen Erwinia amylovora. The formulation of pathogen inoculum applied to blossoms influenced establishment of the pathogen and the efficacy of biological control. Pantoea vagans C9-1 suppressed fire blight in all five trials in which the pathogen was applied as lyophilized cells but in none of the trials in which the pathogen was applied as freshly harvested cells. In contrast, Pseudomonas fluorescens A506 reduced disease significantly in only one trial. A mixture of the two strains also suppressed fire blight, but the magnitude of disease suppression over all field trials (averaging 32%) was less than that attained by C9-1 alone (42%). The two biological control agents did not antagonize one another on blossom surfaces, and application of the mixture of A506 and C9-1 to blossoms resulted in a greater proportion of flowers having detectable populations of at least one bacterial antagonist than the application of individual strains. Therefore, the mixture of A506 and C9-1 provided less disease control than expected based upon the epiphytic population sizes of the antagonists on blossom surfaces. We speculate that the biocontrol mixture was less effective than anticipated due to incompatibility between the mechanisms by which A506 and C9-1 suppress disease.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
K. Sindhura Bhairavi ◽  
Badal Bhattacharyya ◽  
Gitanjali Devi ◽  
Sudhansu Bhagawati ◽  
Partha Pratim Gyanudoy Das ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) are one of the widely studied biological control agents. The present study was conducted to evaluate the efficacy of two EPNs species, Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) and Steinernema aciari (Qui, Yan, Zhou, Nguyen and Pang) (Rhabditida: Steinernematidae), isolated locally from soils of Majuli river island, Assam, India against two important subterrenean pests; Odontotermes obesus (Rambur) (Isoptera: Termitidae) and Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) under laboratory conditions. Results In case of O. obesus, mortality percent was recorded by H. bacteriophora after 72 h. at 300 IJs/termite and by S. aciari at 250 and 300 IJs/termite after 96 h. The lowest LD50 and LT50 values obtained for H. bacteriophora were 13.054 IJs/termite and 26.639 h., respectively, while those of S. aciari were 42.040 IJs/termite and 31.761 h., respectively. With respect to A. ipsilon, H. bacteriophora registered a highest mortality rate at 300 IJs/larvae after 144 h. S. aciari showed 100 percent mortality at 300 IJs/larva after 168 h. The lowest values of LD50 and LT50 for H. bacteriophora were 35.711 IJs/larva and 83.050 h., respectively. The lowest values of LD50 and LT50 for S. aciari were 71.192 IJs/larvae and 97.921 h., respectively. Overall, H. bacteriophora displayed more virulence toward O. obesus and A. ipsilon than S. aciari. Conclusion Both native EPNs were found effective against O. obesus and A. ipsilon. However, H. bacteriophora was more virulent toward O. obesus and A. ipsilon than S. aciari under the laboratory conditions.


Nematology ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 851-858 ◽  
Author(s):  
Cassandra Edmunds ◽  
Rory J. Post ◽  
Craig S. Wilding ◽  
Robbie Rae

Summary Entomopathogenic nematodes (EPN) of the families Steinernematidae and Heterorhabditidae are lethal insect parasites that have been commercialised as biological control agents. EPN have been isolated from across the world but it has been more than 20 years since the last survey of the UK, and species like Steinernema carpocapsae have never been found here and positively identified through molecular biology. We collected 518 soil samples from a diverse range of habitats across the UK and baited them with Galleria mellonella to isolate EPN. Dead G. mellonella were placed in White traps and emergent EPN underwent DNA barcoding analyses. From the 518 samples, 3.5% were positive for EPN. No Heterorhabditis species were found, but seven isolates of S. glaseri, one isolate of S. feltiae, eight isolates of S. affine and two isolates of S. carpocapsae were found. This was the first confirmed record of S. carpocapsae in the UK.


Sign in / Sign up

Export Citation Format

Share Document