scholarly journals Coefficient Estimate of Toeplitz Determinant for a Certain Class of Close to Convex Functions

2021 ◽  
Vol 17 (5) ◽  
pp. 670-677
Author(s):  
Shaharuddin Cik Soh ◽  
Daud Mohamad ◽  
Huzaifah Dzubaidi

Let S denote the class of analytic and univalent functions in D, where D is defined as unit disk and having the Taylor representation form of S. We will determine the estimation for the Toeplitz determinants where the elements are the Taylor coefficients of the class close-to-convex functions in S.

2018 ◽  
Vol 97 (2) ◽  
pp. 253-264 ◽  
Author(s):  
MD FIROZ ALI ◽  
D. K. THOMAS ◽  
A. VASUDEVARAO

Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.


Author(s):  
Young Jae Sim ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give sharp bounds for the modulus of the second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 2 ( 2 ) ( f ) = a 2 a 4 - a 3 2 for the subclass $$ {\mathcal F_{O}}(\lambda ,\beta )$$ F O ( λ , β ) of strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ 1 / 2 ≤ λ ≤ 1 , and $$0<\beta \le 1$$ 0 < β ≤ 1 . Sharp bounds are also given for $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | , where $$f^{-1}$$ f - 1 is the inverse function of f. The results settle an invariance property of $$|H_2(2)(f)|$$ | H 2 ( 2 ) ( f ) | and $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | for strongly convex functions.


Author(s):  
YOUNG JAE SIM ◽  
DEREK K. THOMAS

Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$ . We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1521
Author(s):  
Young Jae Sim ◽  
Derek K. Thomas

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions given by f(z)=z+∑n=2∞anzn for z∈D. Let S*⊂S be the subset of starlike functions in D and C⊂S the subset of convex functions in D. We give sharp upper and lower bounds for |a3|−|a2| for some important subclasses of S* and C.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2040
Author(s):  
Young Jae Sim ◽  
Derek Keith Thomas

Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions with f(0)=0, and f′(0)=1. Let F be the inverse function of f, given by F(z)=ω+∑n=2∞Anωn for some |ω|≤r0(f). Let S*⊂S be the subset of starlike functions in D, and C the subset of convex functions in D. We show that −1≤|A3|−|A2|≤3 for f∈S, the upper bound being sharp, and sharp upper and lower bounds for |A3|−|A2| for the more important subclasses of S* and C, and for some related classes of Bazilevič functions.


1993 ◽  
Vol 16 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Khalida Inayat Noor

A functionf, analytic in the unit diskEand given by ,f(z)=z+∑k=2∞anzkis said to be in the familyKnif and only ifDnfis close-to-convex, whereDnf=z(1−z)n+1∗f,n∈N0={0,1,2,…}and∗denotes the Hadamard product or convolution. The classesKnare investigated and some properties are given. It is shown thatKn+1⫅KnandKnconsists entirely of univalent functions. Some closure properties of integral operators defined onKnare given.


1999 ◽  
Vol 30 (3) ◽  
pp. 175-182
Author(s):  
H. A. AL-KHARSANI

The object of the present paper is to derive distortion inequalities for fractional integral operator of functions in the class $K (n , \alpha, \beta)$ consisting of analytic and univalent functions with negative coefficients.


Author(s):  
Young Jae Sim ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${\mathcal {S}}$$ S be the subclass of normalised univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . Let F be the inverse function of f defined in some set $$|\omega |\le r_{0}(f)$$ | ω | ≤ r 0 ( f ) , and be given by $$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$$ F ( ω ) = ω + ∑ n = 2 ∞ A n ω n . We prove the sharp inequalities $$-1/3 \le |A_4|-|A_3| \le 1/4$$ - 1 / 3 ≤ | A 4 | - | A 3 | ≤ 1 / 4 for the class $${\mathcal {K}}\subset {\mathcal {S}}$$ K ⊂ S of convex functions, thus providing an analogue to the known sharp inequalities $$-1/3 \le |a_4|-|a_3| \le 1/4$$ - 1 / 3 ≤ | a 4 | - | a 3 | ≤ 1 / 4 , and giving another example of an invariance property amongst coefficient functionals of convex functions.


2019 ◽  
Vol 109 (2) ◽  
pp. 230-249 ◽  
Author(s):  
SAMINATHAN PONNUSAMY ◽  
NAVNEET LAL SHARMA ◽  
KARL-JOACHIM WIRTHS

Let${\mathcal{S}}$be the family of analytic and univalent functions$f$in the unit disk$\mathbb{D}$with the normalization$f(0)=f^{\prime }(0)-1=0$, and let$\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$denote the logarithmic coefficients of$f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families${\mathcal{F}}(c)$and${\mathcal{G}}(c)$of functions$f\in {\mathcal{S}}$defined by$$\begin{eqnarray}\text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)>1-{\displaystyle \frac{c}{2}}\quad \text{and}\quad \text{Re}\biggl(1+{\displaystyle \frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}}\biggr)<1+{\displaystyle \frac{c}{2}},\quad z\in \mathbb{D},\end{eqnarray}$$for some$c\in (0,3]$and$c\in (0,1]$, respectively. We obtain the sharp upper bound for$|\unicode[STIX]{x1D6FE}_{n}|$when$n=1,2,3$and$f$belongs to the classes${\mathcal{F}}(c)$and${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:∙If$f\in {\mathcal{F}}(-1/2)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$for$n\geq 1$, and$$\begin{eqnarray}\mathop{\sum }_{n=1}^{\infty }|\unicode[STIX]{x1D6FE}_{n}|^{2}\leq {\displaystyle \frac{\unicode[STIX]{x1D70B}^{2}}{6}}+{\displaystyle \frac{1}{4}}~\text{Li}_{2}\biggl({\displaystyle \frac{1}{4}}\biggr)-\text{Li}_{2}\biggl({\displaystyle \frac{1}{2}}\biggr),\end{eqnarray}$$where$\text{Li}_{2}(x)$denotes the dilogarithm function.∙If$f\in {\mathcal{G}}(c)$, then$|\unicode[STIX]{x1D6FE}_{n}|\leq c/2n(n+1)$for$n\geq 1$.


Author(s):  
Nicolas K. Artémiadis

AbstractLet be the class of normalized univalent functions in the unit disk. For f ∈ let Sf be the set of all star center points of f. Let 0 = where is the interior of Sf. The influence that the size of the set has on the Taylor coefficients of a function f ∈ 0 is examined, and estimates of these coefficients depending only on , as well as other results, are obtained.


Sign in / Sign up

Export Citation Format

Share Document