Comparative study of corrosion behaviour of HVOF-coated boiler steel in actual boiler environment of a thermal power plant

2017 ◽  
Vol 53 (2) ◽  
pp. 925-932 ◽  
Author(s):  
Varinder Pal Singh Sidhu ◽  
Khushdeep Goyal ◽  
Rakesh Goyal
2017 ◽  
Vol 64 (5) ◽  
pp. 540-549 ◽  
Author(s):  
S.B. Mishra ◽  
Kamlesh Chandra ◽  
Satya Prakash

Purpose The purpose of this study is to investigate the application of Ni3Al coating for boilers and other power plant equipment, which suffer severe erosion-corrosion problems resulting in substantial losses. Currently, superalloys are being used to increase the service life of the boilers. Although the superalloys have adequate mechanical strength at elevated temperature, they often lack resistance to erosion-corrosion environments. Design/methodology/approach In this paper, the erosion-corrosion performance of plasma-sprayed nickel aluminide (Ni3Al) coating on nickel- and iron-based superalloys have been evaluated by exposing them to the low temperature primary superheater zone of the coal-fired thermal power plant at the temperature zone of 540°C for ten cycles of 100 h duration. The exposed products were analysed along the surface and cross-section using scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron micro probe analysis (EPMA). Findings The XRD, SEM and EPMA analyses have shown the formation of mainly NiO, NiAl2O4 and indicated the presence of Ni3Al, Ni and Al2O3. In the boiler environment, Ni3Al coating partially oxidizes and acts as a perfect barrier against erosion-corrosion of superalloys. The partially oxidised Ni3Al coating remains intact even after 1,000 h cycle exposure. Originality/value The probable mechanism of attack for the plasma-sprayed Ni3Al coating in the given boiler environment is presented.


2012 ◽  
Vol 58 (4) ◽  
pp. 351-356
Author(s):  
Mincho B. Hadjiski ◽  
Lyubka A. Doukovska ◽  
Stefan L. Kojnov

Abstract Present paper considers nonlinear trend analysis for diagnostics and predictive maintenance. The subject is a device from Maritsa East 2 thermal power plant a mill fan. The choice of the given power plant is not occasional. This is the largest thermal power plant on the Balkan Peninsula. Mill fans are main part of the fuel preparation in the coal fired power plants. The possibility to predict eventual damages or wear out without switching off the device is significant for providing faultless and reliable work avoiding the losses caused by planned maintenance. This paper addresses the needs of the Maritsa East 2 Complex aiming to improve the ecological parameters of the electro energy production process.


Sign in / Sign up

Export Citation Format

Share Document