Gerber–Shiu Function at Draw-Down Parisian Ruin Time for the Spectrally Negative Lévy Risk Process

Author(s):  
Aili Zhang
Keyword(s):  
2016 ◽  
Vol 53 (2) ◽  
pp. 572-584 ◽  
Author(s):  
Erik J. Baurdoux ◽  
Juan Carlos Pardo ◽  
José Luis Pérez ◽  
Jean-François Renaud

Abstract Inspired by the works of Landriault et al. (2011), (2014), we study the Gerber–Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Lévy insurance risk process. To be more specific, we study the so-called Gerber–Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative Lévy processes and relies on the theory of so-called scale functions. In particular, we extend the recent results of Landriault et al. (2011), (2014).


2015 ◽  
Vol 52 (3) ◽  
pp. 688-702 ◽  
Author(s):  
Krzysztof Dębicki ◽  
Enkelejd Hashorva ◽  
Lanpeng Ji

In this paper we derive the exact asymptotics of the probability of Parisian ruin for self-similar Gaussian risk processes. Additionally, we obtain the normal approximation of the Parisian ruin time and derive an asymptotic relation between the Parisian and the classical ruin times.


2001 ◽  
Vol 33 (1) ◽  
pp. 281-291 ◽  
Author(s):  
Hailiang Yang ◽  
Lianzeng Zhang

In this paper, results on spectrally negative Lévy processes are used to study the ruin probability under some risk processes. These processes include the compound Poisson process and the gamma process, both perturbed by diffusion. In addition, the first time the risk process hits a given level is also studied. In the case of classical risk process, the joint distribution of the ruin time and the first recovery time is obtained. Some results in this paper have appeared before (e.g., Dufresne and Gerber (1991), Gerber (1990), dos Reis (1993)). We revisit them from the Lévy process theory's point of view and in a unified and simple way.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Aili Zhang ◽  
Zhang Liu

This paper focuses on the De Finetti’s dividend problem for the spectrally negative Lévy risk process, where the dividend is deducted from the surplus process according to the racheting dividend strategy which was firstly introduced in Albrecher et al. (2018). A major feature of the racheting strategy lies in which the dividend rate never decreases. Unlike the conventional studies, the closed form expression for the expected, accumulated, and discounted dividend payments until the draw-down time (rather than the ruin time) is obtained in terms of the scale functions corresponding to the underlying Lévy process. The optimal barrier for the ratcheting strategy is also studied, where the dividend rate can be increased. Finally, two special cases, where the scale functions are explicitly known, i.e., the Brownian motion with drift and the compound Poisson model, are considered to illustrate the main result.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jia Zhai ◽  
Haitao Zheng ◽  
Manying Bai ◽  
Yunyun Jiang

The claim process in an insurance risk model with uncertainty is traditionally described by an uncertain renewal reward process. However, the claim process actually includes two processes, which are called the report process and the payment process, respectively. An alternative way is to describe the claim process by an uncertain alternating renewal reward process. Therefore, this paper proposes an insurance risk model under uncertain measure in which the claim process is supposed to be an alternating renewal reward process and the premium process is regarded as a renewal reward process. Then, the paper also gives the inverse uncertainty distribution of the insurance risk process. The expression of ruin index and the uncertainty distribution of the ruin time are derived which both have explicit expressions based on given uncertainty distributions. Finally, several examples are provided to illustrate the modeling ideas.


2014 ◽  
Vol 51 (4) ◽  
pp. 1171-1188 ◽  
Author(s):  
Jean-François Renaud

In this paper we introduce an insurance ruin model with an adaptive premium rate, henceforth referred to as restructuring/refraction, in which classical ruin and bankruptcy are distinguished. In this model the premium rate is increased as soon as the wealth process falls into the red zone and is brought back to its regular level when the wealth process recovers. The analysis is focused mainly on the time a refracted Lévy risk process spends in the red zone (analogous to the duration of the negative surplus). Building on results from [11] and [16], we identify the distribution of various functionals related to occupation times of refracted spectrally negative Lévy processes. For example, these results are used to compute both the probability of bankruptcy and the probability of Parisian ruin in this model with restructuring.


2009 ◽  
Vol 46 (01) ◽  
pp. 85-98 ◽  
Author(s):  
R. L. Loeffen

We consider a modified version of the classical optimal dividends problem of de Finetti in which the objective function is altered by adding in an extra term which takes account of the ruin time of the risk process, the latter being modeled by a spectrally negative Lévy process. We show that, with the exception of a small class, a barrier strategy forms an optimal strategy under the condition that the Lévy measure has a completely monotone density. As a prerequisite for the proof, we show that, under the aforementioned condition on the Lévy measure, theq-scale function of the spectrally negative Lévy process has a derivative which is strictly log-convex.


2009 ◽  
Vol 46 (1) ◽  
pp. 85-98 ◽  
Author(s):  
R. L. Loeffen

We consider a modified version of the classical optimal dividends problem of de Finetti in which the objective function is altered by adding in an extra term which takes account of the ruin time of the risk process, the latter being modeled by a spectrally negative Lévy process. We show that, with the exception of a small class, a barrier strategy forms an optimal strategy under the condition that the Lévy measure has a completely monotone density. As a prerequisite for the proof, we show that, under the aforementioned condition on the Lévy measure, the q-scale function of the spectrally negative Lévy process has a derivative which is strictly log-convex.


2011 ◽  
Vol 48 (4) ◽  
pp. 984-1002 ◽  
Author(s):  
Irmina Czarna ◽  
Zbigniew Palmowski

In this paper we analyze the so-called Parisian ruin probability, which arises when the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we derive an expression for the ruin probability in terms of quantities that can be calculated explicitly in many models. We find its Cramér-type and convolution-equivalent asymptotics when reserves tend to ∞. Finally, we analyze some explicit examples.


2011 ◽  
Vol 48 (04) ◽  
pp. 984-1002 ◽  
Author(s):  
Irmina Czarna ◽  
Zbigniew Palmowski

In this paper we analyze the so-called Parisian ruin probability, which arises when the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we derive an expression for the ruin probability in terms of quantities that can be calculated explicitly in many models. We find its Cramér-type and convolution-equivalent asymptotics when reserves tend to ∞. Finally, we analyze some explicit examples.


Sign in / Sign up

Export Citation Format

Share Document