Impact of land-use/land-cover dynamics on water quality in the Upper Lilongwe River basin, Malawi

Author(s):  
I. S. Nkwanda ◽  
G. L. Feyisa ◽  
F. Zewge ◽  
R. Makwinja
2017 ◽  
Author(s):  
Anoop Kumar Shukla ◽  
Chandra Shekhar Prasad Ojha ◽  
Ana Mijic ◽  
Wouter Buytaert ◽  
Shray Pathak ◽  
...  

Abstract. For sustainable development in a river basin it is crucial to understand population growth–Land Use/Land Cover (LULC) transformations–water quality nexus. This study investigates effects of demographic changes and LULC transformations on surface water quality of Upper Ganga River basin. River gets polluted in both rural and urban area. In rural area, pollution is because of agricultural practices mainly fertilizers, whereas in urban area it is mainly because of domestic and industrial wastes. First, population data was analyzed statistically to study demographic changes in the river basin. LULC change detection was done over the period of February/March 2001 to 2012 [Landsat 7 Enhanced Thematic Mapper (ETM+) data] using remote sensing and Geographical Information System (GIS) techniques. Further, water quality parameters viz. Biological Oxygen Demand (BOD), Dissolve Oxygen (DO) %, Flouride (F), Hardness CaCO3, pH, Total Coliform bacteria and Turbidity were studied in basin for pre-monsoon (May), monsoon (July) and Post-monsoon (November) seasons. Non-parametric Mann–Kendall rank test was done on monthly water quality data to study existing trends. Further, Overall Index of Pollution (OIP) developed specifically for Upper Ganga River basin was used for spatio-temporal water quality assessment. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes are observed in the study area. Water quality degradation has occurred in the river basin consequently the health status of the rivers have also changed from range of acceptable to slightly polluted in urban areas.


GeoScape ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 19-29
Author(s):  
Monoj Kumar Jaiswal ◽  
Nurul Amin

Abstract Alteration of land-use land cover pattern causes severe consequences on the hydrological system by modifying the rainfall-runoff pattern in a region. The study aimed to investigate the impact of land-use land-cover dynamics on runoff generation in different geomorphic divisions of Panchnoi River basin. The study used the Soil Conservation Service-Curve Number method to estimate runoff generation in the Panchnoi River basin in a GIS platform. This study observed that the conversion of the land-use pattern in the geomorphic zones significantly enhances runoff. The Piedmont experience highest land-use change, where 64.17 km2 forest cover lost to cropland and built-up lands, leads to a notable increase in runoff generation, i.e. from 1 076 mm (52.82% of rainfall) in 1990 to 1 467 mm (70.46% of rainfall) in 2015. The Flood plain and New alluvial plain generates high runoff in the basin as it mostly occupied by human-induced land-uses, i.e. 1 444 mm (72.72% of rainfall) and 1 360 mm (71.70% of rainfall) respectively in 1990, which increase to 1588 mm (79.20%) and 1507 mm (78.69%) runoff respectively in 2015, due to alteration of cropland to built-up lands. In the Old alluvial plain, a marginal land-use change observed resulted in moderate growth in runoff from 1 272 mm (62.35%) to 1 404 mm (66.79%). The study indicates land-use land-cover change invokes to increase runoff generation can give rise severe environmental and economic problems in the river basin, through the occurrence of flashflood and soil erosion. Highlights for public administration, management and planning: • Evaluation of the impact of land-use land cover dynamics on runoff is essential for containing flash flood and water resource management on a basin scale. • Alteration of natural land covers has severe implications in the form of flood, soil erosion, and loss of biodiversity. • Enhanced runoff due to land-use dynamics reduces groundwater recharge rate that may cause drinking water scarcity in the dry season shortly.


Sign in / Sign up

Export Citation Format

Share Document