Mathematical modeling of flow field in slab continuous casting mold considering mold powder and solidified shell with high temperature quantitative measurement

Author(s):  
Yi-bo Liu ◽  
Jian Yang ◽  
Chao Ma ◽  
Tao Zhang ◽  
Fu-bin Gao ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1886
Author(s):  
Yibo Liu ◽  
Jian Yang ◽  
Fuxiang Huang ◽  
Keran Zhu ◽  
Fenggang Liu ◽  
...  

In the present work, the flow field in a slab continuous casting mold with thicknesses of 180 and 250 mm are compared using high temperature quantitative measurement and numerical simulation. The results of the numerical simulation are in agreement with those of the high temperature quantitative measurement, which verifies the accuracy and reliability of the numerical simulation. Under the same working conditions, the velocities near the mold surface with the thickness of 180 mm were slightly higher than those of the mold with the thickness of 250 mm. The flow pattern in the 180 mm thick mold maintains DRF more easily than that in 250 mm thick mold. The kinetic energy of the jet dissipates faster in the 250 mm thick mold than in the 180 mm mold. For double-roll flow (DRF), as the argon gas bubbles can be flushed into the deeper region under the influence of strong jets on both sides, the argon bubbles distribute widely in the mold. For single-roll flow (SRF), as the argon bubbles float up quickly after leaving the side holes, the bubble distribution is more concentrated in the width direction, which may cause violent interface fluctuation and slag entrainment. The fluctuation at the steel-slag interface in the mold with 180 mm thickness is greater than that in the mold with 250 mm thickness but less than 5 mm. The increase of mold thickness may lead to a decrease of the symmetry of the flow field in the thickness direction and uniformity of mold powder layer thickness. In summary, the steel throughput should be increased in the 250 mm thick mold compared with that in the 180 mm thick mold.


JOM ◽  
2018 ◽  
Vol 71 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Xubin Zhang ◽  
Wei Chen ◽  
Piotr Roman Scheller ◽  
Ying Ren ◽  
Lifeng Zhang

2014 ◽  
Vol 900 ◽  
pp. 72-77
Author(s):  
Yue Xin Wang ◽  
Zhi Fang Zhang ◽  
Yu Ting Guo

For a period of time, because of a steel factorys frequent breakout , through monitoring the breakout slab cover, One of the important reasons for breakout is unreasonable flow field distribution in the mold. Through simulation this thesis analyzes how the parameters such as draw speedsubmerged nozzle affect the condition of flow field in the continuous casting mold , optimizing submerged nozzles structure and size which are fit for slab continue caster craftwork.


2010 ◽  
Vol 146-147 ◽  
pp. 599-606
Author(s):  
Hong Zhong ◽  
Liang Ying Wen ◽  
Zheng Peng ◽  
Xiao Lin Zhang

The shell distribution in the slab continuous casting mold has been simulated coupling a 3-D flow, temperature and volume fraction equations of the molten steel in FLUENT. The simulated results show that the flow velocity around the upper vortex center is decrease and the location of lower vortex center move down as the nozzle port angle increases. The simulated shell thickness in the center on the narrow face become thicker at meniscus and the shell thickness in the center on wide face decreases but the basic distributions of the shell tend to consistency as the nozzle port angle increases. The simulated results also show that the effects of solidified shell on flow field in mold is slight but the velocity of molten steel near the solidified shell. There are remelting near the impact regoins implicit our attentions in order to avoid breaking out.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3681
Author(s):  
Guoliang Liu ◽  
Haibiao Lu ◽  
Bin Li ◽  
Chenxi Ji ◽  
Jiangshan Zhang ◽  
...  

A mathematical model coupled with electromagnetic field has been developed to simulate the transient turbulence flow and initial solidification in a slab continuous casting mold under different electromagnetic stirring (EMS) currents and casting speeds. Through comparing the magnetic flux density, flow field with measured results, the reliability of the mathematical model is proved. The uniform index of solidified shell thickness has been introduced to judge the uniformity of the solidified shell. The results show that a horizonal recirculation flow has been generated when EMS is applied, and either accelerated or decelerated regions of flow field are formed in the liquid pool. Large EMS current and low casting speed may cause the plug flow near the mold narrow face and a suitable EMS current can benefit to the uniform growth of solidified shell. Meanwhile, an industrial test exhibits that EMS can weaken the level fluctuation and number density of inclusion. Overall, a rational EMS current range is gained, when the casting speed is 1.2 m/min, the rational EMS current is 500–600 A.


Sign in / Sign up

Export Citation Format

Share Document