scholarly journals Optimal allocation of distributed generations using hybrid technique with fuzzy logic controller radial distribution system

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Rajesh Kumar Samala ◽  
Mercy Rosalina Kotapuri
2021 ◽  
Vol 3 (2) ◽  
pp. 409-423
Author(s):  
Ayman Awad ◽  
Hussein Abdel-Mawgoud ◽  
Salah Kamel ◽  
Abdalla A. Ibrahim ◽  
Francisco Jurado

Distributed generation (DG) is becoming a prominent key spot for research in recent years because it can be utilized in emergency/reserve plans for power systems and power quality improvement issues, besides its drastic impact on the environment as a greenhouse gas (GHG) reducer. For maximizing the benefits from such technology, it is crucial to identify the best size and location for DG that achieves the required goal of installing it. This paper presents an investigation of the optimized allocation of DG in different modes using a proposed hybrid technique, the tunicate swarm algorithm/sine-cosine algorithm (TSA/SCA). This investigation is performed on an IEEE-69 Radial Distribution System (RDS), where the impact of such allocation on the system is evaluated by NEPLAN software.


A cooperative strategy to reconfigure the feeder network by maximizing the location and volume of the distribution generator (DG) in the power system was addressed in this report. The new feature of the proposed method is the integrated output of the Biography Based Optimization (BBO) and PSO techniques. The above methods are the optimization techniques used to configure the radial distribution system for the optimal position and capacities of the DG. For determining the optimum position and strength of the DG, the BBO algorithm includes radial distribution network voltage, actual and reactive energy. The input parameters of BBO are classified into sub settings here and are allowed as the optimization of the PSO algorithm. The PSO synthesizes the problem and uses sub-parameters to create the sub-solution. The method of BBO migration and mutation is used to determine the optimal position and ability of DG for the sub solution of PSO. The cooperative strategy introduced is then applied on the system MATLAB / Simulink, and the usefulness is evaluated using BBO and PSO techniques. The findings of the analysis demonstrate the strength of the solution suggested and affirm its capacity for resolving the problem.


Sign in / Sign up

Export Citation Format

Share Document