scholarly journals Compiling basic linear algebra subroutines for quantum computers

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Liming Zhao ◽  
Zhikuan Zhao ◽  
Patrick Rebentrost ◽  
Joseph Fitzsimons
2021 ◽  
pp. 032-047
Author(s):  
Yu LW ◽  
Wang NL ◽  
Kanemitsu S

Anticipating the realization of quantum computers, we propose the most reader-friendly exposition of quantum information and qubits theory. Although the latter lies within framework of linear algebra, it has some fl avor of quantum mechanics and it would be easier to get used to special symbols and terminologies. Quantum mechanics is described in the language of functional analysis: the state space (the totality of all states) of a quantum system is a Hilbert space over the complex numbers and all mechanical quantities are taken as Hermite operators. Hence some basics of functional analysis is necessary. We make a smooth transition from linear algebra to functional analysis by comparing the elements in these theories: Hilbert space vs. fi nite dimensional vector space, Hermite operator vs. linear map given by a Hermite matrix. Then from Newtonian mechanics to quantum mechanics and then to the theory of qubits. We elucidate qubits theory a bit by accommodating it into linear algebra framework under these precursors.


Author(s):  
Guanglei Xu ◽  
William S. Oates

Since its inception by Richard Feynman in 1982, quantum computing has provided an intriguing opportunity to advance computational capabilities over classical computing. Classical computers use bits to process information in terms of zeros and ones. Quantum computers use the complex world of quantum mechanics to carry out calculations using qubits (the quantum analog of a classical bit). The qubit can be in a superposition of the zero and one state simultaneously unlike a classical bit. The true power of quantum computing comes from the complexity of entanglement between many qubits. When entanglement is realized, quantum algorithms for problems such as factoring numbers and solving linear algebra problems show exponential speed-up relative to any known classical algorithm. Linear algebra problems are of particular interest in engineering application for solving problems that use finite element and finite difference methods. Here, we explore quantum linear algebra problems where we design and implement a quantum circuit that can be tested on IBM’s quantum computing hardware. A set of quantum gates are assimilated into a circuit and implemented on the IBM Q system to demonstrate its algorithm capabilities and its measurement methodology.


Author(s):  
Mihály Bakonyi ◽  
Hugo J. Woerdeman

Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than two hundred exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to six hundred references from books and journals from a wide variety of disciplines.


Sign in / Sign up

Export Citation Format

Share Document