classical computing
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 53)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 2 (4) ◽  
pp. 1-37
Author(s):  
X. Fu ◽  
Jintao Yu ◽  
Xing Su ◽  
Hanru Jiang ◽  
Hua Wu ◽  
...  

The increasing control complexity of Noisy Intermediate-Scale Quantum (NISQ) systems underlines the necessity of integrating quantum hardware with quantum software. While mapping heterogeneous quantum-classical computing (HQCC) algorithms to NISQ hardware for execution, we observed a few dissatisfactions in quantum programming languages (QPLs), including difficult mapping to hardware, limited expressiveness, and counter-intuitive code. In addition, noisy qubits require repeatedly performed quantum experiments, which explicitly operate low-level configurations, such as pulses and timing of operations. This requirement is beyond the scope or capability of most existing QPLs. We summarize three execution models to depict the quantum-classical interaction of existing QPLs. Based on the refined HQCC model, we propose the Quingo framework to integrate and manage quantum-classical software and hardware to provide the programmability over HQCC applications and map them to NISQ hardware. We propose a six-phase quantum program life-cycle model matching the refined HQCC model, which is implemented by a runtime system. We also propose the Quingo programming language, an external domain-specific language highlighting timer-based timing control and opaque operation definition, which can be used to describe quantum experiments. We believe the Quingo framework could contribute to the clarification of key techniques in the design of future HQCC systems.


Author(s):  
Andrés García ◽  
José Ranilla ◽  
Raul Alonso Alvarez ◽  
Luis Meijueiro

The shortage of quantum computers, and their current state of development, constraints research in many fields that could benefit from quantum computing. Although the work of a quantum computer can be simulated with classical computing, personal computers take so long to run quantum experiments that they are not very useful for the progress of research. This manuscript presents an open quantum computing simulation platform that enables quantum computing researchers to have access to high performance simulations. This platform, called QUTE, relies on a supercomputer powerful enough to simulate general purpose quantum circuits of up to 38 qubits, and even more under particular simulations. This manuscript describes in-depth the characteristics of the QUTE platform and the results achieved in certain classical experiments in this field, which would give readers an accurate idea of the system capabilities.


Author(s):  
Christof Wetterich

A simple probabilistic cellular automaton is shown to be equivalent to a relativistic fermionic quantum field theory with interactions. Occupation numbers for fermions are classical bits or Ising spins. The automaton acts deterministically on bit configurations. The genuinely probabilistic character of quantum physics is realized by probabilistic initial conditions. In turn, the probabilistic automaton is equivalent to the classical statistical system of a generalized Ising model. For a description of the probabilistic information at any given time quantum concepts as wave functions and non-commuting operators for observables emerge naturally. Quantum mechanics can be understood as a particular case of classical statistics. This offers prospects to realize aspects of quantum computing in the form of probabilistic classical computing. This article is part of the theme issue ‘Quantum technologies in particle physics’.


Author(s):  
Ropa Roy ◽  
Asoke Nath

A quantum gate or quantum logic gate is an elementary quantum circuit working on a small number of qubits. It means that quantum gates can grasp two primary feature of quantum mechanics that are entirely out of reach for classical gates : superposition and entanglement. In simpler words quantum gates are reversible. In classical computing sets of logic gates are connected to construct digital circuits. Similarly, quantum logic gates operates on input states that are generally in superposition states to compute the output. In this paper the authors will discuss in detail what is single and multiple qubit gates and scope and challenges in quantum gates.


Author(s):  
Palash Dutta Banik ◽  
Asoke Nath

Quantum Computing is relatively new and it's kind of a special type of computing that uses the laws of quantum physics. In classical computing, we have some limitations and we can overcome those with the help of Quantum Computing as it uses qubits, but we need to keep those qubits at low temperature. Quantum Computing uses the probabilistic nature of electrons. The power of a quantum computer increases exponentially with the number of qubits linked tougher. Quantum computers are very difficult to make but there are a huge number of calculations that can be done easily with the use of a quantum computer. Quantum computers are way better and faster than classical computers. So, we can say that quantum computers rather than quantum computing will be used in the near future to replace classical computing.


Author(s):  
Xiangjing Wang ◽  
Li Zhu ◽  
Chunsheng Chen ◽  
Huiwu Mao ◽  
Yixin Zhu ◽  
...  

Abstract Brain-inspired neuromorphic computing would bring a breakthrough to the classical computing paradigm through its massive parallelism and potential low power consumption advantages. Introduction of flexibility may bring vitality to this area by expanding its application areas to such as wearable and implantable electronics. At present, the development of flexible neuromorphic devices makes it a choice with wide prospect for next-generation wearable artificial neuromorphic computing. In this study, a freestanding graphene oxide (GO)/polyvinyl alcohol (PVA) composite solid electrolyte membrane is utilized as the gate dielectric and support material, and indium–zinc-oxide (IZO) neuromorphic transistors are fabricated on such membrane. Based on the in-plane gate modulation, many key synaptic plasticity behaviors have been successfully emulated, including excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), high-pass filtering, and spatiotemporal signal processing. Moreover, transition of the spiking logic and the superlinear and sublinear dendritic integration function are realized. Our results indicate that these freestanding IZO-based neuromorphic transistors may of great significance for future flexible anthropomorphic robots, wearable bionic perception.


2021 ◽  
Author(s):  
Aishwarya Jhanwar ◽  
Manisha J. Nene

Recently, increased availability of the data has led to advances in the field of machine learning. Despite of the growth in the domain of machine learning, the proximity to the physical limits of chip fabrication in classical computing is motivating researchers to explore the properties of quantum computing. Since quantum computers leverages the properties of quantum mechanics, it carries the ability to surpass classical computers in machine learning tasks. The study in this paper contributes in enabling researchers to understand how quantum computers can bring a paradigm shift in the field of machine learning. This paper addresses the concepts of quantum computing which influences machine learning in a quantum world. It also states the speedup observed in different machine learning algorithms when executed on quantum computers. The paper towards the end advocates the use of quantum application software and throw light on the existing challenges faced by quantum computers in the current scenario.


2021 ◽  
Vol 11 (23) ◽  
pp. 11386
Author(s):  
Kodai Shiba ◽  
Chih-Chieh Chen ◽  
Masaru Sogabe ◽  
Katsuyoshi Sakamoto ◽  
Tomah Sogabe

Quantum computing is suggested as a new tool to deal with large data set for machine learning applications. However, many quantum algorithms are too expensive to fit into the small-scale quantum hardware available today and the loading of big classical data into small quantum memory is still an unsolved obstacle. These difficulties lead to the study of quantum-inspired techniques using classical computation. In this work, we propose a new classification method based on support vectors from a DBSCAN–Deutsch–Jozsa ranking and an Ising prediction model. The proposed algorithm has an advantage over standard classical SVM in the scaling with respect to the number of training data at the training phase. The method can be executed in a pure classical computer and can be accelerated in a hybrid quantum–classical computing environment. We demonstrate the applicability of the proposed algorithm with simulations and theory.


2021 ◽  
Author(s):  
Alan Kadin

<div>It is widely believed that quantum computing is on the threshold of practicality, with performance that will soon greatly surpass that of classical computing. On the contrary, I argue that quantum computing does not currently exist, and probably never will. First, although quantum annealing systems have been demonstrated to solve practical optimization problems, they are actually performing classical analog annealing, with no quantum enhancement. In contrast, while systems of quantum gate arrays, which are expected to perform digital quantum computing, have been fabricated with up to ~ 100 qubits in several technologies, they have not performed any practical computations. This is not merely a question of excess noise; the theory of massive quantum entanglement, necessary for the desired performance, has never been actually been verified. The well-established quantum results such as electronic energy bands do not incorporate quantum entanglement. I suggest that the experimental observations in multi-qubit systems may be explained as the result of delocalized coupled oscillator modes, similar to that in electronic energy bands. Such coupled modes would not yield the exponential increase in degrees of freedom needed for quantum speedup, and hence would not be useful for computing. Tests on these multi-qubit systems should be able to distinguish these two models. The quantum computing research community really needs to address this issue.</div>


Sign in / Sign up

Export Citation Format

Share Document