scholarly journals Distribution and diversity of alternate hosts of Maruca vitrata Fabricius in three West African countries

Author(s):  
Prince Christopher Addae ◽  
Y. Anani Bruce ◽  
Iliyasu M. Utono ◽  
Mumuni Abudulai ◽  
Fousseni Traore ◽  
...  

AbstractThe evolution of resistance to the Bacillus thuringiensis (Bt) toxins by insect pests is a major threat to Bt technology. However, the rate of resistance can be slowed with appropriate integrated insect resistance management (IRM) strategies. Surveys were conducted to identify alternate host species for Maruca vitrata (commonly called the legume pod borer or Maruca) that could serve as refuges for Pod-Borer Resistant (PBR) cowpea in three West African countries (Ghana, Nigeria, and Burkina Faso). Survey sites included 25 in northern Ghana, 44 in northern Nigeria, and 52 in north-central and southwestern Burkina Faso. Alternate hosts of Maruca identified from plant species belonging to the Fabaceae family that showed signs of Maruca damage on cowpea tissues were collected and dissected. Larvae that were found during these dissections were reared to adult moths in the laboratory then identified to species. The alternate host plants including species of Crotolaria, Sesbania, Tephrosia, and Vigna were the most frequently encountered among sites and locations. Flowering and podding of these plants overlapped with flowering and podding of the nearby (~200 m) cowpea crop. Abundance of these wild hosts and overlapping flowering patterns with the cowpea crop in most locations have the potential to sustain ample numbers of Bt susceptible Maruca that will mate with possible resistant Maruca and deter resistance development. Further quantitative studies, however, are required from each location to determine if actual Maruca production from alternate hosts is sufficient for a PBR IRM strategy. If verified, this approach would be compatible with the high dose/refuge IRM strategy that includes alternate hosts and non-Bt crops as refuges.

2020 ◽  
Vol 113 (2) ◽  
pp. 974-979
Author(s):  
Prince C Addae ◽  
Mohammad F Ishiyaku ◽  
Jean-Batiste Tignegre ◽  
Malick N Ba ◽  
Joseph B Bationo ◽  
...  

Abstract Cowpea [Vigna unguiculata (L) Walp.] is an important staple legume in the diet of many households in sub-Saharan Africa. Its production, however, is negatively impacted by many insect pests including bean pod borer, Maruca vitrata F., which can cause 20–80% yield loss. Several genetically engineered cowpea events that contain a cry1Ab gene from Bacillus thuringiensis (Bt) for resistance against M. vitrata were evaluated in Nigeria, Burkina Faso, and Ghana (West Africa), where cowpea is commonly grown. As part of the regulatory safety package, these efficacy data were developed and evaluated by in-country scientists. The Bt-cowpea lines were planted in confined field trials under Insect-proof netting and artificially infested with up to 500 M. vitrata larvae per plant during bud formation and flowering periods. Bt-cowpea lines provided nearly complete pod and seed protection and in most cases resulted in significantly increased seed yield over non-Bt control lines. An integrated pest management strategy that includes use of Bt-cowpea augmented with minimal insecticide treatment for protection against other insects is recommended to control pod borer to enhance cowpea production. The insect resistance management plan is based on the high-dose refuge strategy where non-Bt-cowpea and natural refuges are expected to provide M. vitrata susceptible to Cry1Ab protein. In addition, there will be a limited release of this product until a two-toxin cowpea pyramid is released. Other than South African genetically engineered crops, Bt-cowpea is the first genetically engineered food crop developed by the public sector and approved for release in sub-Saharan Africa.


2012 ◽  
Vol 102 (5) ◽  
pp. 589-599 ◽  
Author(s):  
T.A. Agunbiade ◽  
B.S. Coates ◽  
K.S. Kim ◽  
D. Forgacs ◽  
V.M. Margam ◽  
...  

AbstractThe legume pod borer, Maruca vitrata, is an endemic insect pest that causes significant yield loss to the cowpea crop in West Africa. The application of population genetic tools is important in the management of insect pests but such data on M. vitrata is lacking. We applied a set of six microsatellite markers to assess the population structure of M. vitrata collected at five sites from Burkina Faso, Niger and Nigeria. Observed polymorphisms ranged from one (marker 3393) to eight (marker 32008) alleles per locus. Observed and expected heterozygosities ranged from 0.0 to 0.8 and 0.0 to 0.6, respectively. Three of the loci in samples from Nigeria and Burkina Faso deviated significantly from Hardy-Weinberg Equilibrium (HWE), whereas no loci deviated significantly in samples from Niger. Analysis of molecular variance (AMOVA) indicated that 67.3% level of the genetic variation was within individuals compared to 17.3% among populations. A global estimate of FST=0.1 (ENA corrected FST=0.1) was significant (P⩽0.05) and corroborated by pairwise FST values that were significant among all possible comparisons. A significant correlation was predicted between genetic divergence and geographic distance between subpopulations (R2=0.6, P=0.04), and cluster analysis by the program STRUCTURE predicted that co-ancestry of genotypes were indicative of three distinct populations. The spatial genetic variance among M. vitrata in West Africa may be due to limited gene flow, south-north seasonal movement pattern or other reproductive barriers. This information is important for the cultural, chemical and biological control strategies for managing M. vitrata.


Parasitology ◽  
1996 ◽  
Vol 112 (4) ◽  
pp. 401-408 ◽  
Author(s):  
P. Fischer ◽  
J. Bamuhiiga ◽  
A. H. D. Kilian ◽  
D. W. Büttner

SUMMARYPolymerase chain reaction (PCR) combined with non-radioactive DNA hybridization was applied for the detection and characterization of a 150 bp tandem repeat of Onchocerca volvulus. DNA of worms from western Uganda was amplified and then probed with a digoxygenin-labelled oligonucleotide, specific for the forest form of O. volvulus and compared to samples from various African countries. Hybridization was only observed with PCR products from the forest in Liberia, south-eastern Ghana, Benin and southern Cameroon, but not with worms from Uganda or the savannah in Burkina Faso and northern Ghana. A nested PCR using primers derived form the forest form-specific DNA sequence confirmed these results. Morphometric studies revealed length differences between the microfilariae of Ugandan O. volvulus to those of West Africa, especially to those of the savannah in Burkina Faso. It is concluded that the forest/savannah classification of O. volvulus from West Africa is not suitable for Simulium weasel-transmitted O. volvulus from Uganda.


2021 ◽  
Author(s):  
Madhurima Chatterjee ◽  
Jyoti Yadav ◽  
Maniraj Rathinam ◽  
Kesiraju Karthik ◽  
Gopal Chowdhary ◽  
...  

Abstract Insect pests are one of the major biotic stresses limiting yield in commercially important food crops. The lepidopteran polyphagous spotted pod borer, Maruca vitrata causes significant economic losses in legumes including pigeonpea. RNAi-based gene silencing has emerged as one of the potential biotechnological tools for crop improvement. We report in this paper, RNAi in M. vitrata through exogenous administration of dsRNA encoding three functionally important genes, Alpha-amylase (α-amylase), Chymotrypsin-like serine protease (CTLP) and Tropomyosin (TPM) into the larval haemolymph and their host-delivered RNAi in pigeonpea. Significant decline in the expression of selected genes supported by over-expression of DICER and generation of siRNA indicated the occurrence of RNAi in the dsRNA-injected larvae. Additionally, the onset of RNAi in the herbivore was demonstrated in pigeonpea, one of the prominent hosts, by host-delivered RNAi. Transgenics in pigeonpea (cv. Pusa992), a highly recalcitrant crop, were developed through a shoot apical meristem-targeted in planta transformation strategy and evaluated. Plant level bioassays in transgenic events characterized and selected at molecular level showed mortality of M. vitrata larvae as well as reduced feeding when compared to wild type. Furthermore, molecular evidences for down regulation of target genes in the insects that fed on transgenics authenticated RNAi. Considering the variability of gene silencing in lepidopteran pests, this study provided corroborative proof for the possibility of gene silencing in M. vitrata through both the strategies.


Author(s):  
Abhishek Yadav ◽  
Gaje Singh ◽  
Amit Yadav ◽  
Hem Singh ◽  
Veer Singh ◽  
...  

Background: Blackgram (Vigna mungo L.) is an important pulse crop occupying a unique position in Indian agriculture and it stands fourth in area and production among the pulses. The popularity of this pulse is due to its nutritional and industrial values. Blackgram crop is attacked by a number of insect pests from sowing to harvest in the field as well as in storage condition. Among these insects-pests pod borers i.e. spotted pod borer, Maruca vitrata (Geyer) and gram pod borer, Helicoverpa armigera (Hubner) are serious insect-pests of black gram causing seed and pod damage. Therefore, keeping these views in mind, the present study was conducted. Methods: Present investigations were carried out during Kharif season of 2018 and 2019 to identify the resistant cultivars that are less susceptible to spotted pod borer and gram pod borer in black gram. Result: Fifteen black gram genotypes were screened against pod borers i.e. M. vitrata and H. armigera. When the data of both years were pooled, the two genotypes viz., KU-99-05 and Azad Urd-1 were found with minimum pod infestation of 7.67 and 9.67 per cent, respectively and categorized as resistant (R) against M. vitrata. The four genotypes KU-99-05, Azad Urd-1, Shekhar-2 and PU-6 were classified as resistant (R) against H. armigera with minimum pod infestation of 5.83, 6.17, 8.50 and 9.83 per cent, respectively during both the consecutive seasons (Kharif, 2018 and 2019).


2014 ◽  
Vol 8 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Fousséni Traore ◽  
Niango Malick Ba ◽  
Clémentine L. Dabire-Binso ◽  
Antoine Sanon ◽  
Barry Robert Pittendrigh

2018 ◽  
Vol 10 (11) ◽  
pp. 4253 ◽  
Author(s):  
Kathrin Stenchly ◽  
Marc Hansen ◽  
Katharina Stein ◽  
Andreas Buerkert ◽  
Wilhelm Loewenstein

Urban and peri-urban agriculture (UPA) in West African countries is developing rapidly in response to population growth and changing consumer preferences. Furthermore, UPA offers opportunities to secure income and social integration for the urban poor. However, little is known about household (HH) income security effects of the ongoing shift in UPA land use from crops that do not rely on insect pollinators for fruit development (e.g., sorghum and millet) to pollinator-dependent crops. In our study we developed a Household Vulnerability Index (HVI) for 224 HHs along a rural–urban gradient of Ouagadougou, Burkina Faso. The HVI indicates to which degree total HH revenue could be affected by a decline in insect pollinators. HH specific relative reduction of agricultural revenue ranged from 0 to −0.83, a reduction in HHs’ revenue of up to 83%, depending on the crops’ level of pollinator dependency. Half of the studied HHs (n = 108) showed an HVI of 0 and remained unaffected by a decline in pollinators. Nevertheless, mean HVI was highest for urban HHs; making these HHs most vulnerable for loss of pollination services. As in urban areas changes in insect-mediated pollination services are expected, the development of resilient UPA systems must consider “pollinator-friendly” landscape management.


2019 ◽  
Vol 14 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Nasiya Beegum AN ◽  
Madhu Subramanian

Trichomes are the morphological features present on the surface of plants, which provide resistance to several insect pests. A pot culture experiment with 48 cowpea accessions were conducted to evaluate the effect of trichomes in cowpea on infestation by spotted pod borer, Maruca vitrata. Significant variation in terms of damage to pods due to spotted pod borer was observed. The number of trichomes per unit area was significantly and negatively correlated (-0.441) with per cent damage. However, the length of trichomes on pods has no significant correlation with per cent damage.


2012 ◽  
Vol 1 (2) ◽  
pp. 275 ◽  
Author(s):  
E. O. Egho ◽  
E. C. Enujeke

<p>Studies were conducted to test the effectiveness of native soap against cowpea insect pests during the late cowpea cropping season in two agro-ecological zones-Asaba and Abraka, Delta State. Four major insect pests, namely the cowpea aphid, <em>Aphis craccivora</em> Koch, the legume flower bud thrips, <em>Megalurothrips sjostedti </em>Tryb, the legume pod borer, <em>Maruca vitrata </em>Fab and pod sucking bugs were studied. The experiment was made up of five treatments-1, 2 and 3 percent concentrations of native soap, cypermethrin (as conventional chemical and check) and a control. Each treatment was replicated three times. The experiment was arranged into a randomised complete block design (RCBD). The results showed that all the major insect pests occurred in the study areas but were more at Asaba compared to Abraka. Native soap was effective against <em>A. craccivora </em>and flower bud thrips population at Asaba. <em>Maruca vitrata </em>was not affected by soap application. Grain yield was high at Abraka and significantly (P&lt;0.05) higher than Asaba. The use of native soap as non-conventional insecticide in cowpea insect pests management appears promising, more so as it is not expensive and safe to handle. Farmers may prefer it to synthetic chemical pesticides with their associated dangers.</p>


Sign in / Sign up

Export Citation Format

Share Document